Ordinary Differential Equations Pdf For Engineering Mathematics
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.
Discover the world's research
- 20+ million members
- 135+ million publications
- 700k+ research projects
Join for free
HANDBOOK OF
ORDINARY
DIFFERENTIAL
EQUATIONS:
EXACT SOLUTIONS,
METHODS, AND
PROBLEMS
Andrei D. Polyanin
Valentin F. Zaitsev
PREFACE
The Handbook of Ordinary Differential Equations for Scientists and Engineers, is a
unique reference for scientists and engineers, which contains over 7,000 ordinary differ-
ential equations with solutions, as well as exact, asymptotic, approximate analytical, nu-
merical, symbolic, and qualitative methods for solving and analyzing linear and nonlinear
equations. First-, second-, third-, fourth- and higher-order ordinary differential equations
and systems of equations are considered. A number of new nonlinear equations, exact solu-
tions, transformations, and methods are described. Equations arising in various applications
(in the theory of heat and mass transfer, nonlinear mechanics, elasticity, hydrodynamics,
theory of nonlinear oscillations, combustion theory, chemical engineering science, etc.)
are considered. Analytical formulas for the effective construction of solutions are given.
Special attention is paid to equations of general form that depend on arbitrary functions.
Almost all other equations contain one or more arbitrary parameters (i.e., in fact, this book
deals with whole families of ordinary differential equations), which can be fixed by the
reader at will. A number of specific examples where the methods described in the book are
used are considered. Statements of existence and uniqueness theorems as well as theorems
of stability and instability of solutions are given as well. Boundary-value problems and
eigenvalue problems are described. Significant attention is given to Cauchy problems with
blow-up solutions as well as the important questions of nonexistence and nonuniqueness of
solutions to nonlinear boundary-value problems. Elements of bifurcation theory, Lie group
and discrete-group methods for ODEs, and the factorization principle are discussed. Sym-
bolic and numerical methods for solving ODEs problems with Maple, Mathematica, and
MATLAB are considered.
All in all, the handbook contains much more ordinary differential equations, problems,
methods, solutions, and transformations than any other book currently available. It essen-
tial that symbolic computation systems, even the most powerful ones such as Maple or
Mathematica, can provide no more than 40–50% of the exact analytical solutions to ODEs
given in this book (Chapters 13 through 18).
The main material is followed by a number of supplements, which present tables of
integrals, finite and infinite series, and integral transforms as well as a brief description of
the basic properties of elementary and special functions (Bessel, modified Bessel, hyperge-
ometric, Legendre, etc.).
New material compared to Handbook of Exact Solutions for Ordinary Differential
Equations, 2003:
•The total volume of the new handbook has almost doubled (increased by nearly 700
pages).
•Some first-, second-, and third-order nonlinear ODEs with solutions.
•Some analytical methods (including new methods) and standard numerical methods.
•Special numerical methods (including new methods) for solving problems with qual-
itative features or singularities.
•Symbolic and numerical methods with Maple, Mathematica, and MATLAB.
xxxiii
xxxiv P REFAC E
•Many new problems, illustrative examples, and figures.
•Elementary theory of using invariants for solving equations.
•Methods for the construction of particular solutions (including the method of differ-
ential constraints).
•Systems of coupled ordinary differential equations with solutions.
•Equations defined parametrically or implicitly (exact and numerical methods and
exact solutions) as well as overdetermined systems of ODEs and underdetermined
ODEs.
For the convenience of a wide audience with varying mathematical backgrounds, the
authors tried to do their best to avoid special terminology whenever possible. Therefore,
some of the methods are outlined in a schematic and somewhat simplified manner, with
necessary references made to books where these methods are considered in more detail.
Many sections were written so that they could be read independently (moreover, many top-
ics do not require special mathematical background for their understanding and successful
practical application). This allows the reader to get to the heart of the matter quickly.
The handbook consists of parts, chapters, sections, subsections, and paragraphs. The
material within sections is arranged in increasing order of complexity. An extensive table
of contents and detailed index provides rapid access to the desired equations.
Isolated sections of the book can be used by university and college lecturers in practical
courses and lectures on ordinary differential equations for graduate and postgraduate stu-
dents. Furthermore, the second part of the book (Chapters 13–18) can be used as a database
of test problems for numerical, approximate analytical, and symbolic methods for solving
ordinary differential equations.
We would like to express our keen gratitude to Alexei Zhurov for fruitful discussions
and valuable remarks. We are very thankful to Inna Shingareva and Carlos Liz´
arraga-
Celaya, who wrote three chapters (19–21) of the book at our request. Also, we would like
to express our deep gratitude to Vladimir Nazaikinskii for translating several chapters of
this handbook.
The authors hope that the handbook will prove helpful for a wide audience of re-
searchers, university and college teachers, engineers, and students in various fields of math-
ematics, physics, mechanics, control, chemistry, economics, and engineering sciences.
Andrei D. Polyanin
Valentin F. Zaitsev
CONTENTS
Preface xxiii
Authors xxv
Basic Notation and Remarks xxvii
Part I. Methods for Ordinary Differential Equations 1
1 Methods for First-Order Differential Equations 3
1.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 3
1.1.1 Equations Solved for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Equations Not Solved for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Equations Solved for the Derivative. Simplest Techniques of Integration . . . . . . 8
1.2.1 Equations with Separable Variables and Related Equations . . . . . . . . . . . . 8
1.2.2 Homogeneous and Generalized Homogeneous Equations . . . . . . . . . . . . . 9
1.2.3 Linear Equation and Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Darboux Equation and Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Exact Differential Equations. Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Exact Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 General Riccati Equation. Simplest Integrable Cases. Polynomial
Solutions ....................................................... 13
1.4.2 Use of Particular Solutions to Construct the General Solution . . . . . . . . . 15
1.4.3 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 Special Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Abel Equations of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 General Form of Abel Equations of the First Kind. Simplest Integrable
Cases .......................................................... 18
1.5.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.1 General Form of Abel Equations of the Second Kind. Simplest Integrable
Cases .......................................................... 20
1.6.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.3 Use of Particular Solutions to Construct Self-Transformations and the
General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Classification and Specific Features of Some Classes of Solutions . . . . . . . . . . . . 25
1.7.1 Stable and Unstable Solutions. Equilibrium Points . . . . . . . . . . . . . . . . . . . 25
1.7.2 Blow-Up Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7.3 Space Localization of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7.4 Cauchy Problems Admitting Non-Unique Solutions . . . . . . . . . . . . . . . . . . 36
1.8 Equations Not Solved for the Derivative and Equations Defined Parametrically 37
1.8.1 Method of "Integration by Differentiation" for Equations Not Solved for
the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.8.2 Equations Not Solved for the Derivative. Specific Equations . . . . . . . . . . 38
1.8.3 Equations Defined Parametrically and Differential-Algebraic Equations 40
1.9 Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.9.1 General Form of Contact Transformations. Method for the Construction
of Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.9.2 Examples of Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.10 Pfaffian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.10.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.10.2 Completely Integrable Pfaffian Equations . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.10.3 Pfaffian Equations Not Satisfying the Integrability Condition . . . . . . . . 48
1.11 Approximate Analytic Methods for Solution of ODEs . . . . . . . . . . . . . . . . . . . . . 49
1.11.1 Method of Successive Approximations (Picard Method) . . . . . . . . . . . . 49
1.11.2 Newton–Kantorovich Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.11.3 Method of Series Expansion in the Independent Variable . . . . . . . . . . . 53
1.11.4 Method of Regular Expansion in the Small Parameter . . . . . . . . . . . . . . 56
1.12 Differential Inequalities and Solution Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.12.1 Two Theorems on Solution Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.12.2 Chaplygin's Theorem and Its Applications (Bilateral Estimates of the
Cauchy Problem Solution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.13 Standard Numerical Methods for Solving Ordinary Differential Equations . . . 61
1.13.1 Single-Step Methods. Runge–Kutta Methods . . . . . . . . . . . . . . . . . . . . . 61
1.13.2 Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.13.3 Predictor–Corrector Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.13.4 Modified Multistep Methods (Butcher's Methods) . . . . . . . . . . . . . . . . . 72
1.13.5 Stability and Convergence of Numerical Methods . . . . . . . . . . . . . . . . . . 72
1.13.6 Well- and Ill-Conditioned Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.14 Special Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.14.1 Special Methods Based on Auxiliary Equations . . . . . . . . . . . . . . . . . . . 74
1.14.2 Numerical Integration of Equations That Contain Fixed Singular
Points ....................................................... 76
1.14.3 Numerical Integration of Equations Defined Parametrically or
Implicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.14.4 Numerical Solution of Blow-Up Problems . . . . . . . . . . . . . . . . . . . . . . . . 81
1.14.5 Numerical Solution of Problems with Root Singularity . . . . . . . . . . . . . 89
2 Methods for Second-Order Linear Differential Equations 93
2.1 Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.1.1 Formulas for the General Solution. Wronskian Determinant . . . . . . . . . . . 93
2.1.2 Factorization and Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2 Nonhomogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.2.1 Existence Theorem. Kummer–Liouville Transformation . . . . . . . . . . . . . . 96
2.2.2 Formulas for the General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.3 Representation of Solutions as a Series in the Independent Variable . . . . . . . . . . 97
2.3.1 Equation Coefficients are Representable in the Ordinary Power Series
Form .......................................................... 97
2.3.2 Equation Coefficients Have Poles at Some Point . . . . . . . . . . . . . . . . . . . . . 98
2.4 Asymptotic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.4.1 Equations Not Containing y ′
x..................................... 100
2.4.2 Equations Containing y ′
x......................................... 102
2.5 Boundary Value Problems. Green's Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.5.1 First, Second, Third, and Some Other Boundary Value Problems . . . . . . . 103
2.5.2 Simplification of Boundary Conditions. Self-Adjoint Form of Equations 106
2.5.3 Green's and Modified Green's Functions. Representation Solutions via
Green's or Modified Green's Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.6 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.6.1 Sturm–Liouville Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.6.2 General Properties of the Sturm–Liouville Problem (2.6.1.1), (2.6.1.2) . 111
2.6.3 Problems with Boundary Conditions of the First Kind . . . . . . . . . . . . . . . . 112
2.6.4 Problems with Boundary Conditions of the Second Kind . . . . . . . . . . . . . 113
2.6.5 Problems with Boundary Conditions of the Third Kind . . . . . . . . . . . . . . . 114
2.6.6 Problems with Mixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.7 Theorems on Estimates and Zeros of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.7.1 Theorem on Estimates of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.7.2 Sturm Comparison Theorem on Zeros of Solutions . . . . . . . . . . . . . . . . . . 115
2.7.3 Qualitative Behavior of Solutions as x → ∞ ........................ 116
2.8 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.8.1 Numerov's Method (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.8.2 Modified Shooting Method (Boundary Value Problems) . . . . . . . . . . . . . . 117
2.8.3 Sweep Method (Boundary Value Problems) . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.8.4 Method of Accelerated Convergence in Eigenvalue Problems . . . . . . . . . 119
2.8.5 Well-Conditioned and Ill-Conditioned Problems . . . . . . . . . . . . . . . . . . . . . 120
3 Methods for Second-Order Nonlinear Differential Equations 123
3.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 123
3.1.1 Equations Solved for the Derivative. General Solution . . . . . . . . . . . . . . . . 123
3.1.2 Cauchy Problem. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . 123
3.2 Some Transformations. Equations Admitting Reduction of Order . . . . . . . . . . . . 124
3.2.1 Equations Not Containing y or x Explicitly. Related Equations . . . . . . . . 124
3.2.2 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.3 Generalized Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.4 Equations Invariant under Scaling–Translation Transformations . . . . . . . 126
3.2.5 Exact Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2.6 Nonlinear Equations Involving Linear Homogeneous Differential Forms 128
3.2.7 Reduction of Quasilinear Equations to the Normal Form . . . . . . . . . . . . . . 129
3.2.8 Equations Defined Parametrically and Differential-Algebraic Equations 129
3.3 Boundary Value Problems. Uniqueness and Existence Theorems. Nonexistence
Theorems ............................................................ 133
3.3.1 Uniqueness and Existence Theorems for Boundary Value Problems . . . . 134
3.3.2 Reduction of Boundary Value Problems to Integral Equations. Integral
Identity. Jentzch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.3.3 Theorem on Nonexistence of Solutions to the First Boundary Value
Problem. Theorems on Existence of Two Solutions . . . . . . . . . . . . . . . . . . 139
3.3.4 Examples of Existence, Nonuniqueness, and Nonexistence of Solutions
to First Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.3.5 Theorems on Nonexistence of Solutions for the Mixed Problem.
Theorems on Existence of Two Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.3.6 Examples of Existence, Nonuniqueness, and Nonexistence of Solutions
to Mixed Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.3.7 Theorems on Existence of Two Solutions for the Third Boundary Value
Problem ........................................................ 151
3.3.8 Boundary Value Problems for Linear Equations with Nonlinear
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.4 Method of Regular Series Expansions with Respect to the Independent Variable 154
3.4.1 Method of Expansion in Powers of the Independent Variable . . . . . . . . . . 154
3.4.2 Pad´
e Approximants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.5 Movable Singularities of Solutions of Ordinary Differential Equations. Painlev´
e
Equations ............................................................ 157
3.5.1 Preliminary Remarks. Singular Points of Solutions . . . . . . . . . . . . . . . . . . 157
3.5.2 First Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.5.3 Second Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.5.4 Third Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.5.5 Fourth Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.5.6 Fifth Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.5.7 Sixth Painlev´
e Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.6 Perturbation Methods of Mechanics and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
3.6.1 Preliminary Remarks. Summary Table of Basic Methods . . . . . . . . . . . . . 171
3.6.2 Method of Regular (Direct) Expansion in Powers of the Small Parameter 173
3.6.3 Method of Scaled Parameters (Lindstedt–Poincar ´
e Method) . . . . . . . . . . . 174
3.6.4 Averaging Method (Van der Pol–Krylov–Bogolyubov Scheme) . . . . . . . . 175
3.6.5 Method of Two-Scale Expansions (Cole–Kevorkian Scheme) . . . . . . . . . 177
3.6.6 Method of Matched Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . 178
3.7 Galerkin Method and Its Modifications (Projection Methods) . . . . . . . . . . . . . . . . 181
3.7.1 Approximate Solution for a Boundary Value Problem . . . . . . . . . . . . . . . . 181
3.7.2 Galerkin Method. General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.7.3 Bubnov–Galerkin, Moment, and Least Squares Methods . . . . . . . . . . . . . . 182
3.7.4 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.7.5 Method of Partitioning the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.7.6 Least Squared Error Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.8 Iteration and Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.8.1 Method of Successive Approximations (Cauchy Problem) . . . . . . . . . . . . 185
3.8.2 Runge–Kutta Method (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.8.3 Reduction to a System of Equations (Cauchy Problem) . . . . . . . . . . . . . . . 186
3.8.4 Predictor–Corrector Methods (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . 186
3.8.5 Shooting Method (Boundary Value Problems) . . . . . . . . . . . . . . . . . . . . . . . 187
3.8.6 Numerical Methods for Problems with Equations Defined Implicitly or
Parametrically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3.8.7 Numerical Solution Blow-Up Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4 Methods for Linear ODEs of Arbitrary Order 197
4.1 Linear Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.1.1 Homogeneous Linear Equations. General Solution . . . . . . . . . . . . . . . . . . . 197
4.1.2 Nonhomogeneous Linear Equations. General and Particular Solutions . . 198
4.2 Linear Equations with Variable Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.2.1 Homogeneous Linear Equations. General Solution. Order Reduction.
Liouville Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.2.2 Nonhomogeneous Linear Equations. General Solution. Superposition
Principle ....................................................... 201
4.2.3 Nonhomogeneous Linear Equations. Cauchy Problem. Reduction to
Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.3 Laplace Transform and the Laplace Integral. Applications to Linear ODEs . . . . 204
4.3.1 Laplace Transform and the Inverse Laplace Transform . . . . . . . . . . . . . . . 204
4.3.2 Main Properties of the Laplace Transform. Inversion Formulas for Some
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.3.3 Limit Theorems. Representation of Inverse Transforms as Convergent
Series and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.3.4 Solution of the Cauchy Problem for Constant-Coefficient Linear ODEs.
Applications to Integro-Differential Equations . . . . . . . . . . . . . . . . . . . . . . 209
4.3.5 Solution of Linear Equations with Polynomial Coefficients Using the
Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.3.6 Solution of Linear Equations with Polynomial Coefficients Using the
Laplace Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.4 Asymptotic Solutions of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.4.1 Fourth-Order Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.4.2 Higher-Order Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.5 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.5.1 Statement of the Problem. Approximate Solution . . . . . . . . . . . . . . . . . . . . 215
4.5.2 Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5 Methods for Nonlinear ODEs of Arbitrary Order 217
5.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 217
5.1.1 Equations Solved for the Derivative. General Solution . . . . . . . . . . . . . . . . 217
5.1.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2 Equations Admitting Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2.1 Equations Not Containing y or x Explicitly . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2.2 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.2.3 Generalized Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5.2.4 Equations Invariant under Scaling-Translation Transformations . . . . . . . . 220
5.2.5 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5.3 Method for Construction of Solvable Equations of General Form . . . . . . . . . . . . 222
5.3.1 Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.3.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.4 Numerical Integration of n -order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.4.1 Numerical Solution of the Cauchy Problem for n -order ODEs . . . . . . . . . 224
5.4.2 Numerical Solution of Equations Defined Implicitly or Parametrically . . 224
6 Methods for Linear Systems of ODEs 227
6.1 Systems of Linear Constant-Coefficient Equations . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.1.1 Systems of First-Order Linear Homogeneous Equations. General
Solution ........................................................ 227
6.1.2 Systems of First-Order Linear Homogeneous Equations. Particular
Solutions ....................................................... 228
6.1.3 Nonhomogeneous Systems of Linear First-Order Equations . . . . . . . . . . . 230
6.1.4 Homogeneous Linear Systems of Higher-Order Differential Equations . 231
6.1.5 Normal Coordinates and Natural Oscillations . . . . . . . . . . . . . . . . . . . . . . . 232
6.1.6 Nonhomogeneous Higher-Order Linear Systems. D'Alembert's Method 233
6.1.7 Usage of the Laplace Transform for Solving Linear Systems of
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.1.8 Classification of Equilibrium Points of Two-Dimensional Linear
Systems ........................................................ 235
6.2 Systems of Linear Variable-Coefficient Equations . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.2.1 Homogeneous Systems of Linear First-Order Equations . . . . . . . . . . . . . . 240
6.2.2 Nonhomogeneous Systems of Linear First-Order Equations . . . . . . . . . . . 242
6.2.3 Euler System of Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . 243
7 Methods for Nonlinear Systems of ODEs 245
7.1 Solutions and First Integrals. Uniqueness and Existence Theorems . . . . . . . . . . . 245
7.1.1 Systems Solved for the Derivative. A Solution and the General Solution 245
7.1.2 Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.1.3 Reduction of Systems of Equations to a Single Equation or to an
Autonomous System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.1.4 First Integrals. Using Them to Reduce System Dimension . . . . . . . . . . . . 247
7.2 Integrable Combinations. Autonomous Systems of Equations . . . . . . . . . . . . . . . 248
7.2.1 Integrable Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.2.2 Autonomous Systems and Their Reduction to Systems of Lower
Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.3 Elements of Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.3.1 Lyapunov Stability. Asymptotic Stability. Unstable Solutions . . . . . . . . . 250
7.3.2 Theorems of Stability and Instability by First Approximation . . . . . . . . . 251
7.3.3 Lyapunov Function. Theorems of Stability and Instability . . . . . . . . . . . . 253
7.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.4.1 Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.4.2 Systems Involving Three or More Equations . . . . . . . . . . . . . . . . . . . . . . . . 259
8 Elements of Bifurcation Theory 263
8.1 Dynamical Systems. Rough and Nonrough Systems . . . . . . . . . . . . . . . . . . . . . . . 263
8.1.1 Bifurcation. Dynamical Systems. Phase Portrait . . . . . . . . . . . . . . . . . . . . . 263
8.1.2 Topologically Equivalent Systems. Rough and Nonrough Systems . . . . . 264
8.2 Bifurcations of Second-Order Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 265
8.2.1 Second-Order Dynamical Systems. Rough and Nonrough Systems . . . . . 265
8.2.2 Bifurcations in Systems of the First Degree of Nonroughness . . . . . . . . . 266
8.3 Bifurcations of Solutions to Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . 270
8.3.1 Bifurcations of Solutions to Linear Boundary Value Problems . . . . . . . . . 270
8.3.2 Bifurcations in Solutions to Nonlinear Boundary Value Problems . . . . . . 270
8.3.3 Bifurcation Analysis of Boundary Value Problems without Linearizing
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9 Elementary Theory of Using Invariants for Solving Equations 277
9.1 Introduction. Symmetries. General Scheme of Using Invariants for Solving
Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.1.1 Symmetries. Transformations Preserving the Form of Equations.
Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.1.2 General Scheme of Using Invariants for Solving Mathematical
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.2 Algebraic Equations and Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.2.1 Algebraic Equations with Even Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.2.2 Reciprocal Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.2.3 Systems of Algebraic Equations Symmetric with Respect to Permutation
of Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.3 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.3.1 Transformations Preserving the Form of Equations. Invariants . . . . . . . . . 283
9.3.2 Order Reduction Procedure for Equations with n≥2 (Reduction to
Solvable Form with n = 1 ) ........................................ 284
9.3.3 Simple Transformations. Invariant Determination Procedure . . . . . . . . . . 284
9.3.4 Analysis of Some Ordinary Differential Equations. Useful Remarks . . . . 285
10 Methods for the Construction of Particular Solutions 289
10.1 Two Problems on Searching for Particular Solutions to ODEs with Parameters 289
10.1.1 Preliminary Remarks. Traveling Wave Solutions . . . . . . . . . . . . . . . . . . 289
10.1.2 Two Problems for ODEs with Parameters. Conditional Capacity of
Exact Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
10.2 Method of Undetermined Coefficients and Its Special Cases . . . . . . . . . . . . . . . . 292
10.2.1 General Description of the Method of Undetermined Coefficients . . . . 292
10.2.2 Power-Law, Tanh-Coth, and Sine-Cosine Methods . . . . . . . . . . . . . . . . . 293
10.2.3 Exp-Function, Q-Expansion and Related Methods . . . . . . . . . . . . . . . . . 297
10.3 Method of Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.3.1 Preliminary Remarks. First-Order Differential Constraints and Their
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.3.2 Differential Constraints of Arbitrary Order. General Consistency
Method for Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.3.3 Using Point Transformations in Combination with the Method of
Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
10.3.4 Using Several Differential Constraints. G′
/G-Expansion Method and
Simplest Equation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11 Group Methods for ODEs 313
11.1 Lie Group Method. Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.1.1 Local One-Parameter Lie Group of Transformations. Invariance
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.1.2 Group Analysis of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . 316
11.1.3 Utilization of Local Groups for Reducing the Order of Equations and
Their Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
11.1.4 Seeking Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
11.2 Contact and B¨
acklund Transformations. Formal Operators. Factorization
Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
11.2.1 Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
11.2.2 B¨
acklund Transformations. Formal Operators and Nonlocal Variables 323
11.2.3 Factorization Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
11.3 First Integrals (Conservation Laws) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
11.3.1 Algorithm of Finding First Integrals of ODEs . . . . . . . . . . . . . . . . . . . . . 334
11.3.2 Applications to Second-Order ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
11.3.3 Lie–B¨
acklund Symmetries Generated by First Integrals . . . . . . . . . . . . . 337
11.4 Underdetermined Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
11.4.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
11.4.2 Factorization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
11.4.3 Some Technical Elements. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.4.4 On Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
12 Discrete-Group Methods 355
12.1 Discrete Group Method for Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . 355
12.1.1 Classes of ODEs with Parameters. Discrete Group of Point
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
12.1.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
12.2 Discrete Group Method Based on RF-Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
12.2.1 General Description of the Method. First and Second RF-Pairs . . . . . . 358
12.2.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
12.3 Discrete Group Method Based on the Inclusion Method . . . . . . . . . . . . . . . . . . . 364
Part II. Exact Solutions of Ordinary Differential Equations 365
13 First-Order Ordinary Differential Equations 367
13.1 Simplest Equations with Arbitrary Functions Integrable in Closed Form . . . . . 367
13.1.1 Equations of the Form y ′
x=f( x)................................ 367
13.1.2 Equations of the Form y ′
x=f( y)................................ 367
13.1.3 Separable Equations y ′
x=f(x ) g( y).............................. 367
13.1.4 Linear Equation g (x )y ′
x=f 1 (x) y+ f 0 (x)........................ 368
13.1.5 Bernoulli Equation g (x )y ′
x=f 1 (x) y+ f n (x)y n . . . . . . . . . . . . . . . . . . . 368
13.1.6 Homogeneous Equation y ′
x=f(y/x ) ............................ 368
13.2 Riccati Equation g (x)y ′
x=f 2 (x) y 2 +f 1 (x)y + f 0 (x)...................... 368
13.2.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
13.2.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
13.2.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 375
13.2.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 378
13.2.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 380
13.2.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 382
13.2.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 387
13.2.8 Equations with Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
13.2.9 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
13.3 Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
13.3.1 Equations of the Form yy′
x−y= f( x)........................... 394
13.3.2 Equations of the Form yy′
x=f( x) y+1 .......................... 409
13.3.3 Equations of the Form yy′
x=f 1 (x)y + f 0 (x)...................... 410
13.3.4 Equations of the Form [g1 (x )y +g0 (x)]y ′
x=f 2 (x) y 2 +f 1 (x) y+ f 0 (x) 422
13.3.5 Some Types of First- and Second-Order Equations Reducible to Abel
Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
13.4 Equations Containing Polynomial Functions of y . . . . . . . . . . . . . . . . . . . . . . . . . 431
13.4.1 Abel Equations of the First Kind
y′
x=f 3 (x)y 3 +f 2 (x) y 2 +f 1 (x)y + f 0 (x). . . . . . . . . . . . . . . . . . . . . . . . . 431
13.4.2 Equations of the Form (A22 y2 +A 12 xy + A11 x2 + A0 )y ′
x=
B22 y2 + B12 xy + B11x2 +B0 ................................... 436
13.4.3 Equations of the Form (A22 y2 +A 12 xy + A11 x2 + A2 y + A1 x )y ′
x=
B22 y2 + B12 xy + B11x2 +B2 y+ B1 x........................... 438
13.4.4 Equations of the Form (A22 y2 + A12xy + A11 x2 + A2 y + A1 x + A0 )y ′
x=
B22 y2 + B12 xy + B11x2 +B2 y+ B1 x+ B0 . . . . . . . . . . . . . . . . . . . . . . . 447
13.4.5 Equations of the Form (A3 y3 +A2 xy2 + A1x2 y + A0 x3 + a1 y +a0 x )y ′
x=
B3 y3 + B2xy2 + B1 x2 y+ B0 x3 + b1 y+ b0 x ...................... 452
13.5 Equations of the Form f (x, y)y ′
x=g( x, y) Containing Arbitrary Parameters . 456
13.5.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
13.5.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 460
13.5.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 464
13.5.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 466
13.5.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 467
13.5.6 Equations Containing Combinations of Exponential, Hyperbolic,
Logarithmic, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 469
13.6 Equations of the Form F (x, y, y′
x) = 0 Containing Arbitrary Parameters . . . . . 471
13.6.1 Equations of the Second Degree in y ′
x............................ 471
13.6.2 Equations of the Third Degree in y ′
x............................. 478
13.6.3 Equations of the Form (y ′
x) k =f( y)+ g( x) . . . . . . . . . . . . . . . . . . . . . . . 481
13.6.4 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
13.7 Equations of the Form f (x, y)y ′
x=g( x, y) Containing Arbitrary Functions . . 495
13.7.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
13.7.2 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 498
13.7.3 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 500
13.7.4 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 501
13.7.5 Equations Containing Combinations of Exponential, Logarithmic, and
Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
13.8 Equations Not Solved for the Derivative and Equations Defined Parametrically 504
13.8.1 Equations Not Solved for the Derivative Containing Arbitrary
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
13.8.2 Some Transformations of Equations Not Solved for the Derivative . . . 514
13.8.3 Equations Defined Parametrically Containing Arbitrary Functions . . . 515
14 Second-Order Ordinary Differential Equations 519
14.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
14.1.1 Representation of the General Solution through a Particular Solution . 519
14.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
14.1.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 553
14.1.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 560
14.1.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 565
14.1.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 568
14.1.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 580
14.1.8 Equations Containing Combinations of Exponential, Logarithmic,
Trigonometric, and Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
14.1.9 Equations with Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
14.1.10 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
14.2 Autonomous Equations y ′′
xx =F(y, y ′
x).................................. 605
14.2.1 Equations of the Form y ′′
xx −y ′
x=f( y)........................... 606
14.2.2 Equations of the Form y ′′
xx +f( y)y ′
x+y= 0 ...................... 610
14.2.3 Lienard Equations y ′′
xx +f( y)y ′
x+g( y) = 0 . . . . . . . . . . . . . . . . . . . . . . . 613
14.2.4 Rayleigh Equations y ′′
xx +f( y ′
x)+ g(y ) = 0 . . . . . . . . . . . . . . . . . . . . . . . 616
14.3 Emden–Fowler Equation y ′′
xx =Ax n y m ................................. 619
14.3.1 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
14.3.2 First Integrals (Conservation Laws) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
14.3.3 Some Formulas and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
14.4 Equations of the Form y ′′
xx =A 1 x n 1 y m 1 +A 2 x n 2 y m 2 . . . . . . . . . . . . . . . . . . . . . 628
14.4.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
14.4.2 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
14.5 Generalized Emden–Fowler Equation y ′′
xx =Ax n y m (y ′
x) l . . . . . . . . . . . . . . . . . . 652
14.5.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
14.5.2 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
14.5.3 Some Formulas and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
14.6 Equations of the Form y ′′
xx =A 1 x n 1 y m 1 (y ′
x) l 1 +A 2 x n 2 y m 2 (y ′
x) l 2 . . . . . . . . . . . 678
14.6.1 Modified Emden–Fowler Equation y ′′
xx =A 1 x −1y ′
x+A 2 x n y m . . . . . . 678
14.6.2 Equations of the Form y ′′
xx = (A 1 x n 1 y m 1 +A 2 x n 2 y m 2 )(y ′
x) l . . . . . . . . 688
14.6.3 Equations of the Form y ′′
xx =σAx n y m (y ′
x) l +Ax n−1y m+1(y ′
x) l−1. . . 718
14.6.4 Other Equations (l1 ̸ =l2 ) ....................................... 733
14.7 Equations of the Form y ′′
xx =f( x) g( y)h ( y ′
x)............................. 739
14.7.1 Equations of the Form y ′′
xx =f(x ) g( y)........................... 739
14.7.2 Equations Containing Power Functions (h ̸≡ const) . . . . . . . . . . . . . . . . 742
14.7.3 Equations Containing Exponential Functions (h ̸≡ const ) . . . . . . . . . . . 746
14.7.4 Equations Containing Hyperbolic Functions (h ̸≡ const ) . . . . . . . . . . . . 750
14.7.5 Equations Containing Trigonometric Functions (h ̸≡ const ) . . . . . . . . . 751
14.7.6 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
14.8 Some Nonlinear Equations with Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . 753
14.8.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
14.8.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 761
14.8.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 769
14.8.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 775
14.8.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 777
14.8.6 Equations Containing the Combinations of Exponential, Hyperbolic,
Logarithmic, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 783
14.9 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
14.9.1 Equations of the Form F (x, y)y ′′
xx +G(x, y) = 0 . . . . . . . . . . . . . . . . . . 786
14.9.2 Equations of the Form F (x, y)y ′′
xx +G(x, y) y ′
x+H( x, y) = 0 . . . . . . . 793
14.9.3 Equations of the Form F (x, y)y ′′
xx +∑ M
m=0 G m (x, y)(y ′
x) m = 0
(M = 2, 3, 4) ................................................. 798
14.9.4 Equations of the Form F (x, y, y′
x)y ′′
xx +G(x, y, y ′
x)=0 . . . . . . . . . . . . 802
14.9.5 Equations Not Solved for Second Derivative . . . . . . . . . . . . . . . . . . . . . . 813
14.9.6 Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
14.9.7 Equations Defined Parametrically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
14.9.8 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
15 Third-Order Ordinary Differential Equations 829
15.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
15.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
15.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
15.1.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 848
15.1.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 853
15.1.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 863
15.1.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 866
15.1.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 879
15.1.8 Equations Containing Combinations of Exponential, Logarithmic,
Trigonometric, and Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
15.1.9 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 892
15.2 Equations of the Form y ′′′
xxx =Ax α y β (y ′
x) γ (y ′′
xx) δ ........................ 901
15.2.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
15.2.2 Equations of the Form y ′′′
xxx =Ay β .............................. 909
15.2.3 Equations of the Form y ′′′
xxx =Ax α y β ............................ 911
15.2.4 Equations with |γ |+ |δ | ̸= 0 ..................................... 912
15.2.5 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
15.3 Equations of the Form y ′′′
xxx =f( y) g( y ′
x)h(y ′′
xx).......................... 945
15.3.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
15.3.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 948
15.3.3 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
15.4 Nonlinear Equations with Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
15.4.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
15.4.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 963
15.4.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 967
15.4.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 971
15.4.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 974
15.5 Nonlinear Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . 978
15.5.1 Equations of the Form F (x, y)y ′′′
xxx +G( x, y) = 0 . . . . . . . . . . . . . . . . . 978
15.5.2 Equations of the Form F (x, y, y′
x)y ′′′
xxx +G( x, y, y ′
x) = 0 . . . . . . . . . . . 980
15.5.3 Equations of the Form F (x, y, y′
x)y ′′′
xxx+G(x, y, y ′
x)y ′′
xx+H(x, y, y ′
x)=
0............................................................ 987
15.5.4 Equations of the Form F (x, y, y′
x)y ′′′
xxx + ∑ αG α (x, y, y ′
x)(y ′′
xx) α = 0 992
15.5.5 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
16 Fourth-Order Ordinary Differential Equations 999
16.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
16.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
16.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
16.1.3 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 1007
16.1.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 1011
16.1.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 1012
16.1.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1015
16.2 Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
16.2.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
16.2.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 1027
16.2.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 1029
16.2.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 1034
16.2.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 1035
16.2.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1040
17 Higher-Order Ordinary Differential Equations 1051
17.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
17.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
17.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
17.1.3 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 1058
17.1.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 1061
17.1.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 1061
17.1.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1064
17.2 Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
17.2.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
17.2.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 1075
17.2.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 1077
17.2.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 1081
17.2.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 1083
17.2.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1087
18 Some Systems of Ordinary Differential Equations 1099
18.1 Linear Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
18.1.1 Systems of First-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
18.1.2 Systems of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
18.2 Linear Systems of Three and More Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
18.3 Nonlinear Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
18.3.1 Systems of First-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
18.3.2 Systems of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
18.4 Nonlinear Systems of Three or More Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
18.4.1 Systems of Three Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
18.4.2 Dynamics of a Rigid Body with a Fixed Point . . . . . . . . . . . . . . . . . . . . . 1115
Part III. Symbolic and Numerical Solutions of Nonlinear PDEs with
Maple, Mathematica, and MATLAB 1119
19 Symbolic and Numerical Solutions of ODEs with Maple 1121
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
19.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
19.1.2 Brief Introduction to Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
19.1.3 Maple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
19.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
19.2.1 Exact Analytical Solutions in Terms of Predefined Functions . . . . . . . . 1127
19.2.2 Exact Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . 1137
19.2.3 Different Types of Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
19.2.4 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 1144
19.2.5 Integral Transform Methods for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
19.2.6 Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . . . 1149
19.3 Group Analysis of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
19.3.1 Solution Strategies and Predefined Functions . . . . . . . . . . . . . . . . . . . . . . 1153
19.3.2 Constructing Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
19.3.3 Constructing Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
19.3.4 Order Reduction of ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
19.4 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
19.4.1 Numerical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 1160
19.4.2 Numerical Methods Embedded in Maple . . . . . . . . . . . . . . . . . . . . . . . . . 1162
19.4.3 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 1168
19.4.4 Initial Value Problems: Constructing Numerical Methods and
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
19.4.5 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 1176
19.4.6 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 1181
19.4.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
20 Symbolic and Numerical Solutions of ODEs with Mathematica 1187
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
20.1.1 Brief Introduction to Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
20.1.2 Mathematica Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
20.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
20.2.1 Exact Analytical Solutions in Terms of Predefined Functions . . . . . . . . 1193
20.2.2 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . 1203
20.2.3 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 1207
20.2.4 Integral Transform Methods for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
20.2.5 Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . . . 1212
20.3 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215
20.3.1 Numerical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 1215
20.3.2 Numerical Methods Embedded in Mathematica . . . . . . . . . . . . . . . . . . . 1217
20.3.3 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 1221
20.3.4 Initial Value Problems: Constructing Numerical Methods and
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
20.3.5 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 1229
20.3.6 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 1235
20.3.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
20.3.8 Phase Plane Analysis for First-Order Autonomous Systems . . . . . . . . . 1239
20.3.9 Numerical-Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
21 Symbolic and Numerical Solutions of ODEs with MATLAB 1245
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
21.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
21.1.2 Brief Introduction to MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
21.1.3 MATLAB Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
21.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
21.2.1 Analytical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 1253
21.2.2 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . 1259
21.2.3 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 1261
21.3 Numerical Solutions of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
21.3.1 Numerical Solutions via Predefined Functions . . . . . . . . . . . . . . . . . . . . . 1263
21.3.2 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 1268
21.3.3 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 1272
21.3.4 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 1276
21.4 Numerical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
21.4.1 First-Order Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
21.4.2 First-Order Systems of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282
Part IV. Supplements 1285
S1 Elementary Functions and Their Properties 1287
S1.1 Power, Exponential, and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
S1.1.1 Properties of the Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
S1.1.2 Properties of the Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
S1.1.3 Properties of the Logarithmic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
S1.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
S1.2.1 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
S1.2.2 Reduction Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
S1.2.3 Relations between Trigonometric Functions of Single Argument . . . . . 1290
S1.2.4 Addition and Subtraction of Trigonometric Functions . . . . . . . . . . . . . . 1290
S1.2.5 Products of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
S1.2.6 Powers of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
S1.2.7 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
S1.2.8 Trigonometric Functions of Multiple Arguments . . . . . . . . . . . . . . . . . . 1292
S1.2.9 Trigonometric Functions of Half Argument . . . . . . . . . . . . . . . . . . . . . . . 1292
S1.2.10 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
S1.2.11 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
S1.2.12 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
S1.2.13 Representation in the Form of Infinite Products . . . . . . . . . . . . . . . . . . . 1293
S1.2.14 Euler and de Moivre Formulas. Relationship with Hyperbolic
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
S1.3 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
S1.3.1 Definitions of Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 1293
S1.3.2 Simplest Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
S1.3.3 Some Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
S1.3.4 Relations between Inverse Trigonometric Functions . . . . . . . . . . . . . . . . 1295
S1.3.5 Addition and Subtraction of Inverse Trigonometric Functions . . . . . . . 1295
S1.3.6 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
S1.3.7 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
S1.3.8 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
S1.4 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
S1.4.1 Definitions of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
S1.4.2 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
S1.4.3 Relations between Hyperbolic Functions of Single Argument (x≥ 0 ) . 1297
S1.4.4 Addition and Subtraction of Hyperbolic Functions . . . . . . . . . . . . . . . . . 1297
S1.4.5 Products of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
S1.4.6 Powers of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
S1.4.7 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
S1.4.8 Hyperbolic Functions of Multiple Argument . . . . . . . . . . . . . . . . . . . . . . 1298
S1.4.9 Hyperbolic Functions of Half Argument . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
S1.4.10 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
S1.4.11 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
S1.4.12 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
S1.4.13 Representation in the Form of Infinite Products . . . . . . . . . . . . . . . . . . . 1299
S1.4.14 Relationship with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . 1300
S1.5 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
S1.5.1 Definitions of Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 1300
S1.5.2 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
S1.5.3 Relations between Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . 1300
S1.5.4 Addition and Subtraction of Inverse Hyperbolic Functions . . . . . . . . . . 1300
S1.5.5 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
S1.5.6 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
S1.5.7 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
S2 Indefinite and Definite Integrals 1303
S2.1 Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
S2.1.1 Integrals Involving Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
S2.1.2 Integrals Involving Irrational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
S2.1.3 Integrals Involving Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . 1310
S2.1.4 Integrals Involving Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1311
S2.1.5 Integrals Involving Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . 1314
S2.1.6 Integrals Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . 1315
S2.1.7 Integrals Involving Inverse Trigonometric Functions . . . . . . . . . . . . . . . 1319
S2.2 Tables of Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
S2.2.1 Integrals Involving Power-Law Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1320
S2.2.2 Integrals Involving Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . 1323
S2.2.3 Integrals Involving Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1324
S2.2.4 Integrals Involving Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . 1325
S2.2.5 Integrals Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . 1325
S2.2.6 Integrals Involving Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
S3 Tables of Laplace and Inverse Laplace Transforms 1331
S3.1 Tables of Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
S3.1.1 General Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
S3.1.2 Expressions with Power-Law Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
S3.1.3 Expressions with Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
S3.1.4 Expressions with Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1334
S3.1.5 Expressions with Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1335
S3.1.6 Expressions with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 1335
S3.1.7 Expressions with Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337
S3.2 Tables of Inverse Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338
S3.2.1 General Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338
S3.2.2 Expressions with Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340
S3.2.3 Expressions with Square Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344
S3.2.4 Expressions with Arbitrary Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345
S3.2.5 Expressions with Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1346
S3.2.6 Expressions with Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1347
S3.2.7 Expressions with Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 1348
S3.2.8 Expressions with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 1349
S3.2.9 Expressions with Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1349
S4 Special Functions and Their Properties 1351
S4.1 Some Coefficients, Symbols, and Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351
S4.1.1 Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351
S4.1.2 Pochhammer Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352
S4.1.3 Bernoulli Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352
S4.1.4 Euler Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353
S4.2 Error Functions. Exponential and Logarithmic Integrals . . . . . . . . . . . . . . . . . . . 1354
S4.2.1 Error Function and Complementary Error Function . . . . . . . . . . . . . . . . 1354
S4.2.2 Exponential Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354
S4.2.3 Logarithmic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355
S4.3 Sine Integral and Cosine Integral. Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . . 1356
S4.3.1 Sine Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356
S4.3.2 Cosine Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357
S4.3.3 Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357
S4.4 Gamma Function, Psi Function, and Beta Function . . . . . . . . . . . . . . . . . . . . . . . 1358
S4.4.1 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1358
S4.4.2 Psi Function (Digamma Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359
S4.4.3 Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360
S4.5 Incomplete Gamma and Beta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360
S4.5.1 Incomplete Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360
S4.5.2 Incomplete Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361
S4.6 Bessel Functions (Cylindrical Functions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362
S4.6.1 Definitions and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362
S4.6.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . 1364
S4.6.3 Zeros and Orthogonality Properties of Bessel Functions . . . . . . . . . . . . 1366
S4.6.4 Hankel Functions (Bessel Functions of the Third Kind) . . . . . . . . . . . . . 1367
S4.7 Modified Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
S4.7.1 Definitions. Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
S4.7.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . 1369
S4.8 Airy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
S4.8.1 Definition and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
S4.8.2 Power Series and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . 1370
S4.9 Degenerate Hypergeometric Functions (Kummer Functions) . . . . . . . . . . . . . . . 1371
S4.9.1 Definitions and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371
S4.9.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . 1374
S4.9.3 Whittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
S4.10 Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
S4.10.1 Various Representations of the Hypergeometric Function . . . . . . . . 1375
S4.10.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
S4.11 Legendre Polynomials, Legendre Functions, and Associated Legendre
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
S4.11.1 Legendre Polynomials and Legendre Functions . . . . . . . . . . . . . . . . . 1377
S4.11.2 Associated Legendre Functions with Integer Indices and Real
Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380
S4.11.3 Associated Legendre Functions. General Case . . . . . . . . . . . . . . . . . 1380
S4.12 Parabolic Cylinder Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
S4.12.1 Definitions. Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
S4.12.2 Integral Representations, Asymptotic Expansions, and Linear
Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384
S4.13 Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
S4.13.1 Complete Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
S4.13.2 Incomplete Elliptic Integrals (Elliptic Integrals) . . . . . . . . . . . . . . . . 1386
S4.14 Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1388
S4.14.1 Jacobi Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1388
S4.14.2 Weierstrass Elliptic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
S4.15 Jacobi Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
S4.15.1 Series Representation of the Jacobi Theta Functions. Simplest
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
S4.15.2 Various Relations and Formulas. Connection with Jacobi Elliptic
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
S4.16 Mathieu Functions and Modified Mathieu Functions . . . . . . . . . . . . . . . . . . . . 1396
S4.16.1 Mathieu Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396
S4.16.2 Modified Mathieu Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398
S4.17 Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398
S4.17.1 Laguerre Polynomials and Generalized Laguerre Polynomials . . . . 1398
S4.17.2 Chebyshev Polynomials and Functions . . . . . . . . . . . . . . . . . . . . . . . . 1400
S4.17.3 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
S4.17.4 Jacobi Polynomials and Gegenbauer Polynomials . . . . . . . . . . . . . . . 1404
S4.18 Nonorthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
S4.18.1 Bernoulli Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
S4.18.2 Euler Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406
References 1409
Index 1427
REFERENCES
Abel, M. L. and Braselton, J. P., Maple by Example , 3rd ed., AP Professional, Boston, MA, 2005.
Abramowitz, M. and Stegun, I. A. (Editors), Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics,
Washington, 1964.
Acosta, G., Dur ´
an, G., and Rossi, J. D., An adaptive time step procedure for a parabolic problem
with blow-up, Computing , Vol. 68, pp. 343–373, 2002.
Ak ˆ
o, K., Subfunctions for ordinary differential equations, II, Funkcialaj Ekvacioj (International
Series), Vol. 10, No. 2, pp. 145–162, 1967.
Ak ˆ
o, K., Subfunctions for ordinary differential equations, III, Funkcialaj Ekvacioj (International
Series), Vol. 11, No. 2, pp. 111–129, 1968.
Akritas, A. G., Elements of Computer Algebra with Applications , Wiley, New York, 1989.
Akulenko, L. D. and Nesterov, S. V., Accelerated convergence method in the Sturm–Liouville
problem, Russ. J. Math. Phys., Vol. 3, No. 4, pp. 517–521, 1996.
Akulenko, L. D. and Nesterov, S. V., Determination of the frequencies and forms of oscillations of
non-uniform distributed systems with boundary conditions of the third kind, Appl. Math. Mech.
(PMM), Vol. 61, No. 4, pp. 531–538, 1997.
Akulenko, L. D. and Nesterov, S. V., High Precision Methods in Eigenvalue Problems and Their
Applications, Chapman & Hall/CRC Press, Boca Raton, 2005.
Alexandrov, A. Yu., Platonov, A. V., Starkov, V. N., Stepenko, N. A., Mathematical Modeling
and Stability Analysis of Biological Communities, Lan', St. Petersburg, 2016.
Alexeeva, T. A., Zaitsev, V. F., and Shvets, T. B., On discrete symmetries of the Abel equation of
the 2nd kind [in Russian]. In: Applied Mechanics and Mathematics, MIPT, Moscow, pp. 4–11,
1992.
Alshina, E. A., Kalitkin, N. N., and Koryakin, P. V., Diagnostics of singularities of exact solutions
in computations with error control [in Russian], Zh. Vychisl. Mat. Mat. Fiz., Vol. 45, No. 10,
pp. 1837–1847, 2005; http://eqworld.ipmnet.ru/ru/solutions/interesting/alshina2005.pdf.
Anderson, R. L. and Ibragimov, N. H., Lie–B¨
acklund Transformations in Applications, SIAM
Studies in Applied Mathematics, Philadelphia, 1979.
Andronov, A. A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Dover Publ., New York,
2011.
Andronov, A. A., Leontovich, E. A., and Gordon, I. I., Theory of Bifurcations of Dynamic Systems
on a Plane, Israel Program for Scientific Translations (IPST), Jerusalem, 1971.
Antimirov, M. Ya., Applied Integral Transforms, American Mathematical Society, Providence,
Rhode Island, 1993.
Arnold, V. I., Additional Chapters of Ordinary Differential Equation Theory [in Russian], Nauka,
Moscow, 1978.
Arnold, V. I. and Afraimovich, V. S., Bifurcation Theory and Catastrophe Theory, Springer-
Verlag, New York, 1999.
Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial
Mechanics, Dynamical System III, Springer, Berlin, 1993.
Ascher, U., Mattheij, R. and Russell, R., Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations, Ser. SIAM Classics in Applied Mathematics, Vol. 13, 1995.
Ascher, U. and Petzold, L., Computer Methods for Ordinary Differential Equations and Differen-
tial-Algebraic Equations, SIAM, Philadelphia, 1998.
1409
Ascher, U. and Petzold, L.,. Projected implicit Runge–Kutta methods for differential algebraic
equations, SIAM J. Numer. Anal., Vol. 28, pp. 1097–1120, 1991.
Bader, G. and Deuflhard, P., A semi-implicit mid-point rule for stiff systems of ordinary
differential equations, Numer. Math, Vol. 41, pp. 373–398, 1983.
Bahder, T. B., Mathematica for Scientists and Engineers , Addison-Wesley, Redwood City, CA,
1994.
Bailey, P. B., Shampine, L. F., and Waltman, P. E., Nonlinear Two Point Boundary Value
Problems, Academic Press, New York, 1968.
Baker, G. A. (Jr.) and Graves–Morris, P., Pad´
e Approximants, Addison–Wesley, London, 1981.
Bakhvalov, N. S., Numerical Methods: Analysis, Algebra, Ordinary Differential Equations, Mir
Publishers, Moscow, 1977.
Barton, D., Willer, I. M. and Zahar, R. V. M., Taylor series method for ordinary differential
equations. In: Mathematical Software (J. R. Rice, editor), Academic Press, New York, 1972.
Barton, D., Willer, I. M., and Zahar, R. V. M., The automatic solution of systems of ordinary
differential equations by the method of Taylor series, Comput. J., Vol. 14, pp. 243–248, 1971.
Bateman, H. and Erd´
elyi, A., Higher Transcendental Functions , Vols. 1 and 2, McGraw-Hill, New
York, 1953.
Bateman, H. and Erd´
elyi, A., Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York,
1955.
Bateman, H. and Erd´
elyi, A., Tables of Integral Transforms. Vols. 1 and 2, McGraw-Hill, New
York, 1954.
Bazykin, A. D., Mathematical Biophysics of Interacting Populations [in Russian], Nauka, Moscow,
1985.
Bebernes, J. and Gaines, R., Dependence on boundary data and a generalized boundary value
problem, J. Differential Equations, Vol. 4, pp. 359–368, 1968.
Bekir, A., New solitons and periodic wave solutions for some nonlinear physical models by using
the sine-cosine method, Physica Scripta, Vol. 77, No. 4, 2008.
Bekir, A., Application of the G′/G -expansion method for nonlinear evolution equations, Phys. Lett.
A, Vol. 372, pp. 3400–3406, 2008.
Bellman, R. and Roth, R., The Laplace Transform, World Scientific Publishing Co., Singapore,
1984.
Berezin, I. S. and Zhidkov, N. P., Computational Methods, Vol. II [in Russian], Fizmatgiz,
Moscow, 1960.
Berkovich, L. M., Factorization and Transformations of Ordinary Differential Equations [in Rus-
sian], Saratov University Publ., Saratov, 1989.
Birkhoff, G. and Rota, G. C., Ordinary Differential Equations, John Wiley & Sons, New York,
1978.
Blaquiere, A., Nonlinear System Analysis, Academic Press, New York, 1966.
Bluman, G. W. and Anco, S. C., Symmetry and Integration Methods for Differential Equations,
Springer, New York, 2002.
Bluman, G. W. and Cole, J. D., Similarity Methods for Differential Equations, Springer, New York,
1974.
Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer, New York, 1989.
Bogacki, P. and Shampine, L. F., An Efficient Runge–Kutta (4, 5) Pair, Report 89–20, Math. Dept.
Southern Methodist University, Dallas, Texas, 1989.
Bogolyubov, N. N. and Mitropol'skii, Yu. A., Asymptotic Methods in the Theory of Nonlinear
Oscillations [in Russian], Nauka, Moscow, 1974.
1410
Boltyanskii, V. G. and Vilenkin, N. Ya., Symmetry in Algebra, 2nd ed. [in Russian], Nauka,
Moscow, 2002.
Boor, C. and Swartz, B., SIAM J. Numerical Analysis, Vol. 10, No. 4, pp. 582–606, 1993.
Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics [in Russian], Regular and Chaotic
Dynamics, Izhevsk, 2001.
Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations and Boundary Value
Problems, 8th Edition, John Wiley & Sons, New York, 2004.
Bratus, A. S., Novozhilov, A. S., and Platonov, A. P., Dynamic Models and Models in Biology [in
Russian], Fizmatlit, Moscow, 2009.
Braun, M., Differential Equations and Their Applications, 4th Edition , Springer, New York, 1993.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996.
Brent, R. P., Algorithms for Minimization without Derivatives, Dover, 2002 (Original edition 1973).
Bulirsch, R. and Stoer, J., Fehlerabsch ¨
atzungen und extrapolation mit rationalen funktionen bei
verfahren vom Richardson–typus, Numer. Math., Vol. 6, pp. 413–427, 1964.
Butcher, J. C., Modified multistep method for numerical integration of ordinary differential
equations, J. Assoc. Comput. Mach., Vol. 12, No. 1, pp. 124–135, 1965.
Butcher, J. C., Order, stepsize and stiffness switching, Computing, Vol. 44, No. 3, pp. 209–220,
1990.
Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and
General Linear Methods, Wiley-Interscience, New York, 1987.
Candy, J. and Rozmus, R., A symplectic integration algorithm for separable Hamiltonian func-
tions, J. Comput. Phys. , Vol. 92, pp. 230–256, 1991.
Cash, J. R., The integration of stiff IVP in ODE using modified extended BDF, Computers and
Mathematics with Applications, Vol. 9, pp. 645–657, 1983.
Cash, J. R. and Considine, S., An MEBDF code for stiff initial value problems, ACM Trans. Math.
Software (TOMS), Vo. 18, No. 2, pp. 142–155, 1992.
Cash, J. R. and Karp, A. H., A variable order Runge–Kutta method for initial value problems with
rapidly varying right-hand sides, ACM Transactions on Mathematical Software, Vol. 16, No. 3,
pp. 201–222, 1990.
Chapra, S. C. and Canale, R. P., Numerical Methods for Engineers, 6th Edition, McGraw-Hill,
Boston, 2010.
Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., and Watt, S. M., A Tutorial
Introduction to Maple V, Springer, Wien, New York, 1992.
Cheb-Terrab, E. S., Duarte, L. G. S., and da Mota, L. A. C. P., Computer algebra solving of first
order ODEs using symmetry methods, Computer Physics Communications , Vol. 101, pp.254–
268, 1997.
Cheb-Terrab, E. S. and von Bulow, K., A computational approach for the analytical solving of
partial differential equations, Computer Physics Communications, Vol. 90, pp. 102–116, 1995.
Cheb-Terrab, E. S. and Kolokolnikov, T., First-order ordinary differential equations, symmetries
and linear transformations, European Journal of Applied Mathematics, Vol. 14, pp. 231–246,
2003.
Cheb-Terrab, E. S. and Roche, A. D., Symmetries and first order ODE patterns, Computer Physics
Communications, Vol. 113, pp. 239–260, 1998.
Cheb-Terrab, E. S., Duarte, L. G. S., and da Mota, L. A. C. P., Computer algebra solving of
second order ODEs using symmetry methods, Computer Physics Communications , Vol. 108,
pp. 90–114, 1998.
1411
Chicone, C., Ordinary Differential Equations with Applications, Springer, Berlin, 1999.
Chowdhury, A. R., Painlev´
e Analysis and Its Applications, Chapman & Hall/CRC Press, Boca
Raton, 2000.
Clarkson, P. A., The third Painlev´
e equation and associated special polynomials, J. Phys. A, Vol.
36, pp. 9507–9532, 2003.
Clarkson, P. A., Painlev´
e Equations — Nonlinear Special Functions: Computation and Application.
In: Orthogonal Polynomials and Special Functions (Eds. Marcell, F. and van Assche, W.), Vol.
1883 of Lecture Notes in Math., pp. 331–411. Springer, Berlin , 2006.
Cohen, S. D. and Hindmarsh, A. C., CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in
Physics, Vol. 10, No. 2, pp. 138–143, 1996.
Cole, G. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company,
Waltham, MA, 1968.
Collatz, L., Eigenwertaufgaben mit Technischen Anwendungen, Akademische Verlagsgesellschaft
Geest & Portig, Leipzig, 1963.
Conte, S. D. and de Boor, C., Elementary Numerical Analysis. An Algorithmic Approach , McGraw-
Hill, 1980.
Conte, R., The Painlev´
e approach to nonlinear ordinary differential equations. In: The Painlev ´
e
Property (ed. by R. Conte), pp. 77–180, CRM Series in Mathematical Physics, Springer, New
York, 1999.
Corless, R. M., Essential Maple, Springer, Berlin, 1995.
Crawford, J. D., Introduction to bifurcation theory, Rev. Mod. Phys., Vol. 63, No. 4, 1991.
Davenport, J. H., Siret, Y., and Tournier, E., Computer Algebra Systems and Algorithms for
Algebraic Computation, Academic Press, London, 1993.
Dekker, T. J., Finding a zero by means of successive linear interpolation. In: Constructive Aspects
of the Fundamental Theorem of Algebra (Dejon, B. and Henrici, P., eds.), Wiley-Interscience,
London, 1969.
Del Buono, N. and Lopez, L., Runge–Kutta type methods based on geodesics for systems of ODEs
on the Stiefel manifold, BIT, Vol. 41, No. 5, pp. 912–923, 2001.
Deuflhard, P., Recent progress in extrapolation methods for ordinary differential equations, SIAM
Rev., Vol. 27, pp. 505–535, 1985.
Deuflhard, P., Hairer, E. and Zugck, J., One-step and extrapolation methods for differential-
algebraic systems, Numer. Math., Vol. 51, pp. 501–516, 1987.
Deuflhard, P., Fiedler, B., and Kunkel, P., Efficient numerical path following beyond critical
points, SIAM Journal on Numerical Analysis , Society for Industrial and Applied Mathematics,
Vol. 24, pp. 912–927, 1987.
Dieci, L., Russel, R. D., and van Vleck, E. S., Unitary integrators and applications to continuous
orthonormalization techniques, SIAM J. Num. Anal. , Vol 31, pp. 261–281, 1994.
Dieci, L. and van Vleck, E. S., Computation of orthonormal factors for fundamental solution
matrices, Numer. Math., Vol. 83, pp. 599–620, 1999.
Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon
Press, New York, 1965.
Dlamini, P.G. and Khumalo, M., On the computation of blow-up solutions for semilinear ODEs
and parabolic PDEs, Math. Problems in Eng., Vol. 2012, Article ID 162034, 15 p., 2012.
Dobrokhotov, S. Yu., Integration by quadratures of 2n -dimensional linear Hamiltonian systems
with n known skew-orthogonal solutions, Russ. Math. Surveys, Vol. 53, No. 2, pp. 380–381,
1998.
Doetsch, G., Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation, Birk-
h¨
auser, Basel–Stuttgart, 1950.
1412
Doetsch, G., Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation,
Birkh¨
auser, Basel–Stuttgart, 1956.
Doetsch, G., Introduction to the Theory and Application of the Laplace Transformation, Springer,
Berlin, 1974.
Dormand, J. R., Numerical Methods for Differential Equations: A Computational Approach, CRC
Press, Boca Raton, 1996.
Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via Exp-function
method, Phys. Letters A , Vol. 365, No. 3, pp. 213–219, 2007.
Elkin, V. I., Reduction of underdetermined systems of ordinary differential equations: I, Differential
Equations, Vol. 45, No. 12, pp. 1721–1731, 2009.
Elkin, V. I., Classification of certain types of underdetermined systems of ordinary differential
equations, Doklady Mathematics, Vol. 81, No. 3, pp. 362–363, 2010.
El'sgol'ts, L. E., Differential Equations, Gordon & Breach Inc., New York, 1961.
Enright, W. H., The Relative Efficiency of Alternative Defect Control Schemes for High Order
Continuous Runge–Kutta Formulas, Technical Report 252/91, Dept. of Computer Science,
University of Toronto, 1991.
Enright, W. H., Jackson, K. R., Nørsett, S. P. and Thomsen, P. G., Interpolants for Runge–Kutta
formulas, ACM TOMS , Vol. 12, pp. 193–218, 1986.
Enright, W. H., Jackson, K. R., Nørsett, S. P. and Thomsen, P. G., Effective solution of
discontinuous IVPS using a RKF pair with interpolants, Proceed. ODE Conference held at
Sandia National Lab., Albuquerque, New Mexico, 1986.
Enright, W. H., A new error-control for initial value solvers, Appl. Math. Comput., Vol. 31, pp. 588–
599, 1989.
Erbe, L. H., Hu, S., and Wang, H., Multiple positive solutions of some boundary value problems,
J. Math. Anal. Appl., Vol. 184, pp. 640–648, 1994.
Erbe, L. H. and Wang, H.,, On the existence of positive solutions of ordinary differential equations,
Proc. Amer. Math. Soc., Vol. 120, pp. 743–748, 1994.
Evans, D. J and Raslan, K. R., The Adomian decomposition method for solving delay differential
equations, Int. J. Comput. Math., Vol. 82, pp. 49–54, 2005.
Faddeev, S. I. and Kogan, V. V., Nonlinear Boundary Value Problems for Systems of Ordinary Dif-
ferential Equations on Finite Interval [in Russian], Novosibirsk State University, Novosibirsk,
2008.
Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. Letters
A, Vol. 277, No. 4–5, pp. 212–218, 2000.
Fedoryuk, M. V., Asymptotic Analysis. Linear Ordinary Differential Equations, Springer, Berlin,
1993.
Fehlberg, E., Klassische Runge–Kutta–Formeln vierter und niedrigerer ordnung mit schrittweiten-
lontrolle und ihre anwendung auf waermeleitungsprobleme, Computing, Vol. 6, pp 61–71, 1970.
Finlayson, B. A., The Method of Weighted Residuals and Variational Principles, Academic Press,
New York, 1972.
Fokas, A. S. and Ablowitz M. J., On unified approach to transformation and elementary solutions
of Painlev´
e equations, J. Math. Phys., Vol. 23, No. 11, pp. 2033–2042, 1982.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical
Computations, Prentice Hall, New Jersey, 1977.
Fox, L. and Mayers, D. F., Numerical Solution of Ordinary Differential Equations for Scientists
and Engineers, Chapman & Hall, 1987.
Frank-Kamenetskii, D. A., Diffusion and Heat Transfer in Chemical Kinetics, 2nd Edition [in
Russian], Nauka, Moscow, 1987 (English edition: Plenum Press, 1969).
1413
Gaisaryan, S. S., Differential equations, ordinary, approximate methods of solution. In: Encyclope-
dia of Mathematics, Kluwer, 2002. URL: http://www.encyclopediaofmath.org/index.php?title=
Differential equations, ordinary, approximate methods of solution of&oldid=11532
Galaktionov, V. A. and Svirshchevskii, S. R., Exact Solutions and Invariant Subspaces of
Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC
Press, Boca Raton, 2006.
Gambier, B., Sur les ´
equations differentielles du second ordre et du premier degr´
e dont l'integrale
g´
en´
erale est `
a points critiques fixes, Acta Math., Vol. 33, pp. 1–55, 1910.
Gantmakher, F. R., Lectures on Analytical Mechanics [in Russian], Fizmatlit, Moscow, 2002.
Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall,
Upper Saddle River, NJ, 1971.
Geddes, K. O., Czapor, S. R., and Labahn, G., Algorithms for Computer Algebra, Kluwer
Academic Publishers, Boston, 1992.
Getz, C. and Helmstedt, J., Graphics with Mathematica: Fractals, Julia Sets, Patterns and Natural
Forms, Elsevier Science & Technology Book, Amsterdam, Boston, 2004.
Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Springer, New York, 1972.
Godunov, S. K. and Ryaben'kii, V. S., Differences Schemes [in Russian], Nauka, Moscow, 1973.
Golub, G. H. and van Loan, C. F., Matrix Computations, 3rd ed., Johns Hopkins University Press,
1996.
Golubev, V. V., Lectures on Analytic Theory of Differential Equations [in Russian], GITTL,
Moscow, 1950.
Goriely, A. and Hyde, C., Necessary and sufficient conditions for finite time singularities in
ordinary differential equations, J. Differential Equations, Vol. 161, pp. 422–448, 2000.
Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products, Academic Press,
New York, 1980.
Gragg, W. B., On extrapolation algorithms for ordinary initial value problems, SIAM J. Num. Anal.,
Vol. 2, pp. 384–403, 1965.
Gray, T. and Glynn, J., Exploring Mathematics with Mathematica: Dialogs Concerning Comput-
ers and Mathematics, Addison-Wesley, Reading, MA, 1991.
Gray, J. W., Mastering Mathematica: Programming Methods and Applications, Academic Press,
San Diego, 1994.
Green, E., Evans, B. and Johnson, J., Exploring Calculus with Mathematica , Wiley, New York,
1994.
Grimshaw, R., Nonlinear Ordinary Differential Equations, CRC Press, Boca Raton, 1991.
Gromak, V. I., Painlev´
e Differential Equations in the Complex Plane, Walter de Gruyter, Berlin,
2002.
Gromak, V. I. and Lukashevich, N. A., Analytical Properties of Solutions of Painlev´
e Equations
[in Russian], Universitetskoe, Minsk, 1990.
Guckenheimer J. and Holms P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields, Springer-Verlag, New York, 1983.
Gustafsson, K., Control theoretic techniques for stepsize selection in explicit Runge–Kutta meth-
ods, ACM Trans. Math. Soft., No. 17, pp. 533–554, 1991.
Hairer, E. and Lubich, C., On extrapolation methods for stiff and differential-algebraic equations,
Teubner Texte zur Mathematik, Vol. 104, pp. 64–73, 1988.
Hairer, E., Symmetric projection methods for differential equations on manifolds, BIT , Vol. 40,
No. 4, pp. 726–734, 2000.
1414
Hairer, E., Lubich, C., and Roche, M., The Numerical Solution of Differential-Algebraic Systems
by Runge-Kutta Methods, Springer, Berlin, 1989.
Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002.
Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff
Problems, 2nd ed., Springer, Berlin, 1993.
Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, 2nd ed., Springer, New York, 1996.
Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York, 1964.
He, J.-H. and Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos, Solitons &
Fractals, Vol. 30, No. 3, pp. 700–708, 2006.
He, J.-H. and Abdou, M. A., New periodic solutions for nonlinear evolution equations using Exp-
function method, Chaos, Solitons & Fractals, Vol. 34, No. 5, pp. 1421–1429, 2007.
Heck, A., Introduction to Maple, 3rd ed., Springer, New York, 2003.
Higham, N. J., Functions of Matrices. Theory and Computation, SIAM, Philadelphia, 2008.
Hill, J. M., Solution of Differential Equations by Means of One-Parameter Groups, Pitman,
Marshfield, MA, 1982.
Hindmarsh, A. C., Odepack, a systemized collection of ODE solvers. In: Scientific Computing
(Stepleman, R. S. et al., eds.), pp. 55–64, North-Holland, Amsterdam, 1983.
Hirota, C. and Ozawa, K., Numerical method of estimating the blow-up time and rate of the
solution of ordinary differential equations: An application to the blow-up problems of partial
differential equations, J. Comput. & Applied Math., Vol. 193, No. 2, pp. 614-637, 2006.
Hosea, M. E. and Shampine, L. F., Analysis and implementation of TR-BDF2, Appl. Numer.
Math., Vol. 20, pp. 21–37, 1996.
Hubbard J. H. and West, B. H., Differential Equations: A Dynamical Systems Approach. Part I.
One Dimensional Equations, Springer, New York, 1990.
Hull, T. E., Enright, W. H., Fellen, B. M., and Sedgwick, A. E., Comparing numerical methods
for ordinary differential equations, SIAM J. Numer. Anal., Vol. 9, pp. 603–637, 1972.
Hydon, P. E., Symmetry Methods for Differential Equations: A Beginner's Guide, Cambridge Univ.
Press, Cambridge, 2000.
Ibragimov, N. H., A Practical Course in Differential Equations and Mathematical Modelling,
Higher Education Press – World Scientific Publ., Beijing – Singapore, 2010.
Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1,
CRC Press, Boca Raton, 1994.
Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, John
Wiley, Chichester, 1999.
Ibragimov, N. H., Transformation Groups Applied to Mathematical Physics, (English translation
published by D. Reidel), Dordrecht, 1985.
Ince, E. L., Ordinary Differential Equations, Dover Publications, New York, 1956.
Iooss G. and Joseph D. D., Elementary Stability and Bifurcation Theory, Springer-Verlag, New
York, 1997.
Its, A. R. and Novokshenov, V. Yu., The Isomonodromic Deformation Method in the Theory of
Painlev´
e Equations, Springer, Berlin, 1986.
Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting ,
MIT Press, 2007.
Jackson, L. K. and Palamides, P. K.,, An existence theorem for a nonlinear two-point boundary
value problem, J. Differential Equations, Vol. 53, pp. 48–66, 1984.
1415
Jacobi, C. G. J., Vorlesungen ¨
uber Dynamik, G. Reimer, Berlin, 1884.
Kahaner, D., Moler, C., and Nash, S., Numerical Methods and Software , Prentice-Hall, New
Jersey, 1989.
Kalitkin, N. N., Numerical Methods [in Russian], Nauka, Moscow, 1978.
Kalitkin, N. N., Alshin, A. B., Alshina, E. A., and Rogov, B. V., Computation on Quasiuniform
Meshes [in Russian], Fizmatlit, Moscow, 2005.
Kamke, E., Differentialgleichungen: L ¨
osungsmethoden und L ¨
osungen, I, Gew¨
ohnliche Differential-
gleichungen, B. G. Teubner, Leipzig, 1977.
Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces [in Russian],
Fizmatgiz, Moscow, 1959.
Kantorovich, L. V. and Krylov, V. I., Approximate Methods of Higher Analysis [in Russian],
Fizmatgiz, Moscow, 1962.
Karakostas, G. L., Nonexistence of solutions to some boundary-value problems for second-order
ordinary differential equations, Electron. J. Differential Equations, No. 20, pp. 1–10, 2012.
Keller, H. B., Numerical Solutions of Two Point Boundary Value Problems, SIAM, Philadelphia,
1976.
Keller, J. B., The shape of the strongest column, Archive for Rational Mechanics and Analysis,
Vol. 5, 275–285, 1960.
Keller J. and Antman S. (Eds.), Bifurcation Theory and Nonlinear Eigenvalue Problems, W. A.
Benjamin Publ., New York, 1969.
Kevorkian, J. and Cole, J. D., Perturbation Methods in Applied Mathematics, Springer, New York,
1981.
Kevorkian, J. and Cole, J. D., Multiple Scale and Singular Perturbation Methods, Springer, New
York, 1996.
Kierzenka, J. and Shampine, L. F., A BVP solver based on residual control and the MATLAB
PSE, ACM Trans. Math. Software, Vol. 27, pp. 299–316, 2001.
Klein, F. and Sommerfeld, A., ¨
Uber die Theorie des Kreisels, Johnson Reprint corp., New York,
1965.
Klimov, D. M. and Zhuravlev, V. Ph., Group-Theoretic Methods in Mechanics and Applied
Mathematics, Taylor & Francis, London, 2002.
Korman, P. and Li, Y., Computing the location and the direction of bifurcation for sign changing
solutions, Dif. Equations & Applications, Vol. 2, No. 1, pp. 1–13, 2010.
Korman, P. and Li, Y., On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc.,
Vol. 127, No. 4, pp. 1011–1020, 1999.
Korman, P., Li, Y., and Ouyang, T., Computing the location and the direction of bifurcation, Math.
Research Letters, Vol. 12, pp. 933–944, 2005.
Korman, P., Global solution branches and exact multiplicity of solutions for two point boundary
value problems. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol 3
(Canada A., Drabek P., and Fonda, A., eds.), Elsevier Science, North Holland, pp. 547–606,
2006.
Korn, G. A. and Korn, T. M., Mathematical Handbook for Scientists and Engineers, 2nd Edition,
Dover Publications, New York, 2000.
Kostyuchenko, A. G. and Sargsyan, I. S., Distribution of Eigenvalues (Self-Adjoint Ordinary
Differential Operators) [in Russian], Nauka, Moscow, 1979.
Kowalewsky, S., Sur le proble'me de la rotation d'un corps solide autor d'un point fixe, Acta. Math.,
Vol. 12, No. 2, pp. 177–232, 1889.
1416
Kowalewsky, S., Me'moires sur un cas particulies du proble'me de la rotation d'un point fixe, cu'
l'integration s'effectue a' l'aide de fonctions ultraelliptiques du tems, Me'moires pre'sente's par
divers savants a' l'Acade'mie des seiences de l'Institut national de France, Paris, Vol. 31, pp.
1–62, 1890.
Koyalovich, B. M., Studies on the differential equation y dy − y dx = R dx [in Russian], Akademiya
Nauk, St. Petersburg, 1894.
Krasnosel'skii, M. A., Vainikko, G. M., Zabreiko, P. P., et al., Approximate Solution of Operator
Equations [in Russian], Nauka, Moscow, 1969.
Kreyszig, E., and Normington, E. J., Maple Computer Manual for Advanced Engineering
Mathematics, Wiley, New York, 1994.
Kudryashov, N. A., Symmetry of algebraic and differential equations, Soros Educational Journal
[in Russian], No. 9, pp. 104–110, 1998.
Kudryashov, N. A., Nonlinear differential equations with exact solutions expressed via the
Weierstrass function, Zeitschrift fur Naturforschung, Vol. 59, pp. 443–454, 2004.
Kudryashov, N. A., Analytical Theory of Nonlinear Differential Equations [in Russian], Institut
kompjuternyh issledovanii, Moscow–Izhevsk, 2004.
Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential
equations, Chaos, Solitons and Fractals, Vol. 24, No. 5, pp. 1217–1231, 2005.
Kudryashov, N. A., A note on the G′/G -expansion method, Applied Math. & Computation,
Vol. 217, No. 4, pp. 1755–1758, 2010.
Kudryashov, N. A., One method for finding exact solutions of nonlinear differential equations,
Commun. Nonlinear Sci. Numer. Simulat., Vol. 17, pp. 2248–2253, 2012.
Kudryashov, N. A., Polynomials in logistic function and solitary waves of nonlinear differential
equations, Applied Math. & Computation, Vol. 219, pp. 9245–9253, 2013.
Kudryashov, N. A., Logistic function as solution of many nonlinear differential equations, Applied
Math. & Modelling, Vol. 39, No. 18, pp. 5733–5742, 2015.
Kudryashov, N. A. and Loguinova, N. V., Extended simplest equation method for nonlinear
differential equations, Applied Math. & Computation, Vol. 205, pp. 396–402, 2008.
Kudryashov, N. A. and Sinelshchikov, D. I., Nonlinear differential equations of the second, third
and fourth order with exact solutions, Applied Math. & Computation, Vol. 218, pp. 10454–
10467, 2012.
Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 3rd Edition, Springer, New York, 2004.
Laetsch, T., The number of solutions of a nonlinear two point boundary value problem, Indiana
Univ. Math. J., Vol. 20, pp. 1–13, 1970.
Lagerstrom, P. A., Matched Asymptotic Expansions. Ideas and Techniques, Springer, New York,
1988.
Lagrange, J. L., Me'canique analyticque. Oeuvres de Lagrange, Vol. 12, Gauthier–Villars, Paris,
1889.
Lambert, J. D., Computational Methods in Ordinary Differential Equations, Wiley, New York,
1973.
Lambert, J. D., Numerical Methods for Ordinary Differential Systems, Wiley, New York, 1991.
Lapidus, L., Aiken, R. C., and Liu, Y. A., The occurrence and numerical solution of physical and
chemical systems having widely varying time constants. In: Stiff Differential Systems (R. A.
Willoughby, editor), pp. 187–200, Plenum, New York, 1973.
Lee, H. J. and Schiesser, W. E., Ordinary and Partial Differential Equation Routines in C, C++,
Fortran, Java, Maple, and MATLAB, Chapman & Hall/CRC Press, Boca Raton, 2004.
LePage, W. R., Complex Variables and the Laplace Transform for Engineers, Dover Publications,
New York, 1980.
1417
Levitan, B. M. and Sargsjan, I. S., Sturm–Liouville and Dirac Operators, Kluwer Academic,
Dordrecht, 1990.
Lian, W.-C., Wong, F.-H., and Yen, C.-C., On the existence of positive solutions of nonlinear
second order differential equations, Proc. American Math. Society , Vol. 124, No. 4, pp. 1117–
1126, 1996.
Lin, C. C. and Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural
Sciences, SIAM, Philadelphia, PA, 1998.
Linchuk, L. V., On group analysis of functional differential equations [in Russian]. In: Proc. of
the Int. Conf MOGRAN-2000 "Modern Group Analysis for the New Millennium," pp. 111–115,
USATU Publishers, Ufa, 2001.
Linchuk, L. V. and Zaitsev, V. F., Searching for first integrals and alternative symmetries
[in Russian]. In: Some Topical Problems of Modern Mathematics and Mathematical Education,
Proc. LXVIII International Conference "Herzen Readings – 2015" (13–17 April 2015, St.
Petersburg, Russia), A. I. Herzen Russian State Pedagogical University, 2015, pp. 50–53.
Lubich, C., Linearly implicit extrapolation methods for differential-algebraic systems, Numer.
Math., Vol. 55, pp. 197–211, 1989.
MacCallum, M. A. H., Using computer algebra to solve ordinary differential equations. In: Studies
for Computer Algebra in Industry, (Cohen, A.M., van Gastel L. J. and Verduyn Lunel, S. M.,
eds.) Vol. 2, John Wiley and Sons, Chichester, 1995.
MacDonald, N., Biological Delay Systems: Linear Stability Theory, Cambridge University Press,
Cambridge, 1989.
Maeder, R. E., Programming in Mathematica, 3rd ed., Addison-Wesley, Reading, MA, 1996.
Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., Vol. 60, No. 7,
pp. 650–654, 1992.
Malfliet, W. and Hereman, W., The tanh method: exact solutions of nonlinear evolution and wave
equations, Phys. Scripta, Vol. 54, pp. 563–568, 1996.
Maplesoft, Differential Equations in Maple 15, Maplesoft, Waterloo, 2012.
Marchenko, V. A., Sturm–Liouville Operators and Applications, Birkh ¨
auser Verlag, Basel–Boston,
1986.
Marchuk, G., Some applications of splitting-up methods to the solution of mathematical physics
problems, Aplikace Matematiky , Vol. 13, pp. 103–132, 1968.
Markeev, A. P., Theoretical Mechanics [in Russian], Regular and Chaotic Dynamics, Moscow–
Izhevsk, 2001.
Marsden J. E. and McCracken M., Hopf Bifurcation and Its Applications , Springer-Verlag, New
York, 1976.
Matveev, N. M., Methods of Integration of Ordinary Differential Equations [in Russian], Vysshaya
Shkola, Moscow, 1967.
McGarvey, J. F., Approximating the general solution of a differential equation, SIAM Review,
Vol. 24, No. 3, pp. 333–337, 1982.
McLachlan, N. W., Theory and Application of Mathieu Functions, Clarendon Press, Oxford, 1947.
McLachlan, R. I. and Atela, P., The accuracy of symplectic integrators, Nonlinearity, Vol. 5,
pp. 541–562, 1992.
Meade, D. B., May, M. S. J., Cheung, C-K., and Keough, G. E., Getting Started with Maple, 3rd
ed., Wiley, Hoboken, NJ, 2009.
Mickens, R.E., Nonstandard Finite Difference Models of Differential Equations, World Scientific,
Singapore, 1994.
Mikhlin, S. G., Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow, 1970.
1418
Meyer-Spasche, R., Difference schemes of optimum degree of implicitness for a family of simple
ODEs with blow-up solutions, J. Comput. and Appl. Mathematics, Vol. 97, pp. 137–152, 1998.
Mikhlin, S. G. and Smolitskii, Kh. L., Approximate Solution Methods for Differential and Integral
Equations [in Russian], Nauka, Moscow, 1965.
Miles, J. W., Integral Transforms in Applied Mathematics, Cambridge University Press, Cambridge,
1971.
Milne, E., Clarkson, P. A., and Bassom, A. P., B¨
acklund transformations and solution hierarchies
for the third Painlev´
e equation., Stud. Appl. Math., Vol. 98, No. 2, pp. 139–194, 1997.
Moriguti, S., Okuno, C., Suekane, R., Iri, M., and Takeuchi, K., Ikiteiru Suugaku — Suuri
Kougaku no Hatten [in Japanese], Baifukan, Tokyo, 1979.
Moussiaux, A., CONVODE: Un Programme REDUCE pour la R´
esolution des ´
Equations Diff´
eren-
tielles, Didier Hatier, Bruxelles, 1996.
Murdock, J. A., Perturbations. Theory and Methods, John Wiley & Sons, New York, 1991.
Murphy, G. M., Ordinary Differential Equations and Their Solutions, D. Van Nostrand, New York,
1960.
Nayfeh, A. H., Perturbation Methods, John Wiley & Sons, New York, 1973.
Nayfeh, A. H., Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981.
Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics. A Unified
Introduction with Applications, Birkh¨
auser Verlag, Basel–Boston, 1988.
Oberhettinger, F. and Badii, L., Tables of Laplace Transforms, Springer, New York, 1973.
Ockendon, J. R. and Taylor, A. B., The dynamics of a current collection system for an electric
locomotive, Proc. Royal Society of London A, Vol. 322, pp. 447–468, 1971.
Olver, F. W. J., Asymptotics and Special Functions , Academic Press, New York, 1974.
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (Editors), NIST Handbook of
Mathematical Functions, NIST and Cambridge Univ. Press, Cambridge, 2010.
Olver, P. J., Application of Lie Groups to Differential Equations, Springer, New York, 1986.
Olver, P. J., Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, 1995.
Olver, P. J., Nonlinear Ordinary Differential Equations, 2012 http://www-users.math.umn.edu/
∼olver/am /odz.pdf
Ovsiannikov, L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982.
Painlev´
e, P., M´
emoire sur les ´
equations differentielles dont l'integrale g´
en´
erale est uniforme, Bull.
Soc. Math. France, Vol. 28, pp. 201–261, 1900.
Paris, R. B., Asymptotic of High Order Differential Equations, Pitman, London, 1986.
Parkes, E. J., Observations on the tanh-coth expansion method for finding solutions to nonlinear
evolution equations, Appl. Math. Comp., Vol. 217, No. 4, pp. 1749–1754, 2010.
Pavlovskii, Yu. N. and Yakovenko, G. N., Groups admitted by dynamical systems [in Russian].
In: Optimization Methods and Applications, Nauka, Novosibirsk, pp. 155–189, 1982.
Petrovskii, I. G., Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka,
Moscow, 1970.
Petzold, L. R., Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations, SIAM J. Sci. Stat. Comput. , Vol. 4, pp. 136–148, 1983.
Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists,
Chapman & Hall/CRC Press, Boca Raton, 2002.
Polyanin, A. D., Systems of Ordinary Differential Equations, From Website EqWorld—The World
of Mathematical Equations, 2006; http://eqworld.ipmnet.ru/en/solutions/sysode.htm.
Polyanin, A. D., Elementary theory of using invariants for solving mathematical equations, Vestnik
Samar. Gos. Univ., Estestvennonauchn. Ser. [in Russian], No. 6(65), pp. 152–176, 2008.
1419
Polyanin, A. D., Overdetermined systems of nonlinear ordinary differential equations with param-
eters and their applications, Bulletin of the National Research Nuclear University MEPhI [in
Russian], Vol. 5, No. 2, pp. 122–136, 2016.
Polyanin, A. D. and Chernoutsan, A. I. (Eds.) A Concise Handbook of Mathematics, Physics, and
Engineering Sciences, CRC Press, Boca Raton, 2011.
Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, 2nd Edition, Chapman &
Hall/CRC Press, Boca Raton, 2008.
Polyanin, A. D. and Manzhirov, A. V., Handbook of Mathematics for Engineers and Scientists,
Chapman & Hall/CRC Press, Boca Raton, 2007.
Polyanin, A. D. and Shingareva, I. K., Nonlinear blow-up problems: Numerical integration
based on differential and nonlocal transformations, Bulletin of the National Research Nuclear
University MEPhI [in Russian], Vol. 6, No. 4, pp. 282–297, 2017a.
Polyanin, A. D. and Shingareva, I. K., The use of differential and non-local transformations for
numerical integration of non-linear blow-up problems, Int. J. Non-Linear Mechanics, Vol. 95,
pp. 178–184, 2017b.
Polyanin, A. D. and Shingareva, I. K., Numerical integration of blow-up problems on the basis of
non-local transformations and differential constraints, arXiv:1707.03493 [math.NA], 2017c.
Polyanin, A. D. and Shingareva, I. K., Nonlinear problems with non-monotonic blow-up solutions:
The method of non-local transformations, test problems, and numerical integration, Bulletin of
the National Research Nuclear University MEPhI [in Russian], Vol. 6, No. 5, pp. 405–424,
2017d.
Polyanin, A. D. and Shingareva, I. K., Non-monotonic blow-up problems: Test problems with
solutions in elementary functions, numerical integration based on non-local transformations,
Applied Mathematics Letters, Vol. 76, pp. 123–129, 2018.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential
Equations, CRC Press, Boca Raton, 1995.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential
Equations, 2nd Edition, Chapman & Hall/CRC Press, Boca Raton, 2003.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Mathematical Physics Equations
[in Russian], Fizmatlit, Moscow, 2002.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations,
Chapman & Hall/CRC Press, Boca Raton, 2004.
Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2nd
Edition, CRC Press, Boca Raton, 2012.
Polyanin, A. D., Zaitsev, V. F., and Moussiaux, A., Handbook of First Order Partial Differential
Equations, Taylor & Francis, London, 2002.
Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations and their
applications in boundary layer theory, Bulletin of the National Research Nuclear University
MEPhI [in Russian], Vol. 5, No. 1, pp. 23–31, 2016a.
Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations and their
solutions: Application in fluid dynamics, Appl. Math. Lett., Vol. 55, pp. 72–80, 2016b.
Polyanin, A. D. and Zhurov, A. I., Functional and generalized separable solutions to unsteady
Navier–Stokes equations, Int. J. Non-Linear Mechanics, Vol. 79, pp. 88–98, 2016c.
Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations,
differential-algebraic equations, and implicit ODEs: Transformations, general solutions, and
integration methods, Appl. Math. Lett., Vol. 64, pp. 59–66, 2017a.
Polyanin, A. D. and Zhurov, A. I., Parametrically defined differential equations, Journal of
Physics: IOP Conf. Series, Vol. 788, 2017b, 012078; http://iopscience.iop.org/article/10.1088/
1742-6596/788/1/012028/pdf.
1420
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 1, Elementary
Functions, Gordon & Breach Sci. Publ., New York, 1986.
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 4, Direct
Laplace Transform, Gordon & Breach, New York, 1992a.
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 5, Inverse
Laplace Transform, Gordon & Breach, New York, 1992b.
Puu, T., Attractions, Bifurcations, and Chaos: Nonlinear Phenomena in Economics, Springer-
Verlag, New York, 2000.
Rabier, P. J. and Rheinboldt, W. C., Theoretical and numerical analysis of differential-algebraic
equations, Handbook of Numerical Analysis, Elsevier, Vol. 8, pp. 183–540, North-Holland,
Amsterdam, 2002.
Ray J. R. and Reid, J. L., More exact invariants for the time dependent harmonic oscillator, Phys.
Letters, Vol. 71, pp. 317–319, 1979.
Reid, W. T., Riccati Differential Equations, Academic Press, New York, 1972.
Reiss, E. L., Bifurcation Theory and Nonlinear Eigenvalue Problems., W. A. Benjamin Publ., New
York, 1969.
Reiss, E. L., Column buckling: An elementary example of bifurcation. In: Bifurcation Theory and
Nonlinear Eigenvalue Problems (J. B. Keller and S. Antman, eds.), pp. 1–16, W. A. Benjamin
Publ., New York, 1969.
Reiss, E. L. and Matkowsky, B. J., Nonlinear dynamic buckling of a compressed elastic column,
Quart. Appl. Math., Vol. 29, 245–260, 1971.
Richards, D., Advanced Mathematical Methods with Maple, Cambridge University Press, Cam-
bridge, 2002.
Ronveaux, A. (Editor), Heun's Differential Equations, Oxford University Press, Oxford, 1995.
Rosen, G., Alternative integration procedure for scale-invariant ordinary differential equations, Intl.
J. Math. & Math. Sci., Vol. 2, pp. 143–145, 1979.
Rosenbrock, H. H., Some general implicit processes for the numerical solution of differential
equations, Comput. J., 1963, Vol. 5, No. 4, pp. 329–330.
Ross, C. C., Differential Equations: An Introduction with Mathematica, Springer, New York, 1995.
Russell, R. D. and Shampine, L. F., Numerische Mathematik , Bd. 19, No. 1, S. 1–28, 1972.
Sachdev, P. L., Nonlinear Ordinary Differential Equations and Their Applications, Marcel Dekker,
New York, 1991.
Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to
Turbulence and Chaos, Harwood Academic Publ., New York, 1988.
Saigo, M. and Kilbas, A. A., Solution of one class of linear differential equations in terms of
Mittag-Leffler type functions [in Russian], Dif. Uravneniya, Vol. 38, No. 2, pp. 168–176, 2000.
Sanz-Serna, J. M. and Calvo, M. P., Numerical Hamiltonian Problems: Applied Mathematics and
Mathematical Computation, Chapman & Hall, London, 1994.
Schiesser, W. E., Computational Mathematics in Engineering and Applied Science: ODEs, DAEs,
and PDEs, CRC Press, Boca Raton, 1994.
Shampine, L. F. and M. K. Gordon, M. K., Computer Solution of Ordinary Differential Equations:
the Initial Value Problem, W. H. Freeman, San Francisco, 1975.
Shampine, L. F. and Watts, H. A., The art of writing a Runge–Kutta code I. In: Mathematical
Software III (J. R. Rice, editor), Academic Press, New York, 1977.
Shampine, L. F. and Watts, H. A., The art of writing a Runge–Kutta code II, Appl. Math. Comput.,
Vol. 5, pp. 93–121, 1979.
1421
Shampine, L. F. and Gear, C. W., A user's view of solving stiff ordinary differential equations,
SIAM Review, Vol. 21, pp.1–17, 1979.
Shampine, L. F. and Baca, L. S., Smoothing the extrapolated midpoint rule, Numer. Math. , Vol. 41,
pp. 165–175, 1983.
Shampine, L. F., Control of step size and order in extrapolation codes, J. Comp. Appl. Math.,
Vol. 18, pp. 3–16, 1987.
Shampine, L. F., Numerical Solution of Ordinary Differential Equations, Chapman & Hall/CRC
Press, Boca Raton, 1994.
Shampine, L. F. and Reichelt, M. W., The MATLAB ODE Suite, SIAM Journal on Scientific
Computing, Vol. 18, pp. 1–22, 1997.
Shampine, L. F., Reichelt, M. W., and Kierzenka, J., Solving index-1 DAEs in MATLAB and
Simulink, SIAM Rev., Vol. 41, No. 3, pp. 538552, 1999.
Shampine, L. F. and Corless, R. M., Initial value problems for ODEs in problem solving
environments, Journal of Computational and Applied Mathematics , Vol. 125, No. 1–2, pp.31–
40, 2000.
Shampine, L. F. and Thompson, S., Solving DDEs in MATLAB, Appl. Numer. Math., Vol. 37,
pp. 441–458, 2001.
Shampine, L. F., Gladwell, I., and Thompson, S., Solving ODEs with MATLAB, Cambridge
University Press, Cambridge, UK, 2003.
Shingareva, I. K., Investigation of Standing Surface Waves in a Fluid of Finite Depth by Computer
Algebra Methods, PhD thesis, Institute for Problems in Mechanics, Russian Academy of
Sciences, Moscow, 1995.
Shingareva, I. K. and Liz´
arraga-Celaya, C., Maple and Mathematica. A Problem Solving
Approach for Mathematics, 2nd ed., Springer, Wien, New York, 2009.
Shingareva, I. K. and Liz´
arraga-Celaya, C., Solving Nonlinear Partial Differential Equations
with Maple and Mathematica, Springer, Wien, New York, 2011.
Shingareva, I. K. and Liz´
arraga-Celaya, C., On different symbolic notations for derivatives, The
Mathematical Intelligencer, Vol. 37, No. 3, pp. 33–38, 2015.
Simmons, G. F., Differential Equations with Applications and Historical Notes , McGraw-Hill, New
York, 1972.
Sintsov, D. M., Integration of Ordinary Differential Equations [in Russian], Kharkov, 1913.
Slavyanov, S. Yu., Lay, W., and Seeger, A., Heun's Differential Equation, University Press,
Oxford, 1955.
Sofroniou, M. and Spaletta, G., Construction of explicit Runge–Kutta pairs with stiffness
detection, Mathematical and Computer Modelling (Special Issue on the Numerical Analysis
of Ordinary Differential Equations), Vol. 40, No. 11–12, pp. 1157–1169, 2004.
Sofroniou, M. and Spaletta, G., Derivation of symmetric composition constants for symmetric
integrators, Optimization Methods and Software, Vol. 20, No. 4–5, pp. 597–613, 2005.
Sofroniou, M. and Spaletta, G., Hybrid solvers for splitting and composition methods, J. Comp.
Appl. Math. (Special Issue from the International Workshop on the Technological Aspects of
Mathematics), Vol. 185, No. 2, pp. 278–291, 2006.
Stepanov, V. V., A Course of Differential Equations, 7th Edition [in Russian], Gostekhizdat,
Moscow, 1958.
Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer, New
York, 1982.
Stephani, H., Differential Equations: Their Solution Using Symmetries (edited by M. A. H.
MacCallum), Cambridge University Press, New York, 1989.
1422
Strang, G., On the construction of difference schemes, SIAM J. Num. Anal. , Vol. 5, pp. 506–517,
1968.
Stuart, M. and Floater, M. S., On the computation of blow-up, European J. Applied Math., Vol. 1,
No. 1, pp. 47–71, 1990.
Stephani, H., Differential Equations: Their Solutions Using Symmetries , Cambridge University
Press, Cambridge, 1989.
Strang, G., On the construction of difference schemes, SIAM J. Num. Anal. , Vol. 5, pp. 506–517,
1968.
Svirshchevskii, S. R., Lie–B¨
acklund symmetries of linear ODEs and generalized separation of
variables in nonlinear equations, Phys. Letters A, Vol. 199, pp. 344–348, 1995.
Takayasu, A., Matsue, K., Sasaki, T., Tanaka, K., Mizuguchi, M., and Oishi, S., Numerical vali-
dation of blow-up solutions of ordinary differential equations, J. Comput. Applied Mathematics,
Vol. 314, pp. 10–29, 2017.
Temme, N. M., Special Functions. An Introduction to the Classical Functions of Mathematical
Physics, Wiley-Interscience, New York, 1996.
Tenenbaum, M. and Pollard, H., Ordinary Differential Equations, Dover Publications, New York,
1985.
Teodorescu, P. P., Mechanical Systems, Classical Models: Volume II: Mechanics of Discrete and
Continuous Systems, Springer, Berlin, 2009.
Tikhonov, A. N., Vasil'eva, A. B., and Sveshnikov, A. G., Differential Equations [in Russian],
Nauka, Moscow, 1985.
Trotter, H. F., On the product of semi-group operators, Proc. Am. Math. Soc., Vol. 10, pp. 545–551,
1959.
Van Dyke, M., Perturbation Methods in Fluid Mechanics , Academic Press, New York, 1964.
Van Hulzen, J. A. and Calmet, J., Computer algebra systems. In: Computer Algebra, Symbolic and
Algebraic Manipulation, (Buchberger, B., Collins, G. E., and Loos, R., eds.), 2nd ed., pp. 221–
243, Springer, Berlin, 1983.
Vasil'eva, A. B. and Nefedov, H. H., Nonlinear Boundary Value Problems [in Russian], Lomonosov
MSU, Moscow, 2006; http://math.phys.msu.ru/data/57/Nefmaterial.pdf.
Verner, J. H., Explicit Runge–Kutta methods with estimates of the local truncation error, SIAM
Journal of Numerical Analysis, Vol. 15, No. 4, pp. 772–790, 1978.
Vinogradov, I. M. (Editor), Mathematical Encyclopedia [in Russian], Soviet Encyclopedia, Moscow,
1979.
Vinokurov, V. A. and Sadovnichii, V. A., Arbitrary-order asymptotic relations for eigenvalues and
eigenfunctions in the Sturm–Liouville boundary-value problem on an interval with summable
potential [in Russian], Izv. RAN, Ser. Matematicheskaya, Vol. 64, No. 4, pp. 47–108, 2000.
Vitanov, N. K. and Dimitrova, Z. I., Application of the method of simplest equation for obtaining
exact traveling-wave solutions for two classes of model PDEs from ecology and population
dynamics, Commun. Nonlinear Sci. Numer. Simulat., Vol. 15, No. 10, pp. 2836–2845, 2010.
Vvedensky, D. D., Partial Differential Equations with Mathematica, Addison-Wesley, Wokingham,
1993.
Wang, D.-S., Ren, Y.-J., and Zhang, H.-Q., Further extended sinh-cosh and sin-cos methods and
new non traveling wave solutions of the (2+1)-dimensional dispersive long wave equations,
Appl. Math. E-Notes, Vol. 5, pp. 157–163, 2005.
Wang, M. L., Li, X., Zhang, J., The G′
/G-expansion method and evolution equations in mathe-
matical physics, Phys. Lett. A , Vol. 372, pp. 417–421, 2008.
Wang, S.-H., On S-shaped bifurcation curves, Nonlinear Anal., Vol. 22, No. 12, pp. 1475–1485,
1994.
1423
Wang, S.-H., On the evolution and qualitative behaviors of bifurcation curves for a boundary value
problem, Nonlinear Analysis, Vol. 67, pp. 1316–1328, 2007.
Wasov, W., Asymptotic Expansions for Ordinary Differential Equations, John Wiley & Sons, New
York, 1965.
Wazwaz, A. M., A sine-cosine method for handling nonlinear wave equations, Math. and Computer
Modelling, Vol. 40, No. 5-6, pp. 499–508, 2004.
Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic
equations, Appl. Math. Comput., Vol. 188, No. 2, pp. 1467–1475, 2007a.
Wazwaz, A. M., Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by
the tanh-coth method, Appl. Math. Comput., Vol. 190, No. 1, pp. 633–640, 2007b.
Wazwaz, A. M., Solitary wave solutions of the generalized shallow water wave (GSWW) equa-
tion by Hirota's method, tanh-coth method and Exp-function method, Appl. Math. Comput.,
Vol. 202, No. 1, pp. 275–286, 2008.
Wazzan, L., A modified tanh-coth method for solving the KdV and the KdV–Burgers' equations,
Commun. Nonlinear Sci. and Numer. Simulation, Vol. 14, No. 2, pp. 443–450, 2009.
Wester, M. J., Computer Algebra Systems: A Practical Guide, Wiley, Chichester, UK, 1999.
Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, Vols. 1–2, Cambridge
University Press, Cambridge, 1952.
Wiens, E. G., Bifurcations and Two Dimensional Flows. In: Egwald Mathematics: http://www.
egwald.ca/nonlineardynamics/bifurcations.php
Wiggins, S., Global bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, 1988.
Wolfram, S., A New Kind of Science, Wolfram Media, Champaign, IL, 2002.
Wolfram, S., The Mathematica Book, 5th ed., Wolfram Media, Champaign, IL, 2003.
Yanenko, N. N., The compatibility theory and methods of integration of systems of nonlinear
partial differential equations. In: Proceedings of All-Union Math. Congress, Vol. 2, pp. 613–
621, Nauka, Leningrad, 1964.
Yermakov, V. P., Second-order differential equations. Integrability conditions in closed form
[in Russian], Universitetskie Izvestiya , Kiev, No. 9, pp. 1–25, 1880.
Zaitsev, O. V. and Khakimova, Z. N., Classification of new solvable cases in the class of
polynomial differential equations [in Russian], Topical Issues of Modern Science [Aktual'nye
voprosy sovremennoi nauki], No. 3, pp. 3–11, 2014.
Zaitsev, V. F., Universal description of symmetries on a basis of the formal operators, Proc. Intl.
Conf. MOGRAN-2000 "Modern Group Analysis for the New Millennium," USATU Publishers,
Ufa, pp. 157–160, 2001.
Zaitsev, V. F. and Huan, H. N., Analogues of variational symmetry of third order ODE, Izvestia:
Herzen University Journal of Humanities & Sciences, No. 154, pp. 33–41, 2013.
Zaitsev, V. F. and Huan, H. N., Analogues of variational symmetry of the equation of the type
y′′′ = F( y, y′, y ′′ ), Izvestia: Herzen University Journal of Humanities & Sciences, No. 163,
pp. 7–17, 2014.
Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part I [in Russian],
A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2015.
Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part II [in Russian],
A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2009.
Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part III [in Russian],
A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2014.
1424
Zaitsev, V. F. and Linchuk, L. V., Six new factorizable classes of 2nd-order ODEs [in Russian],
Some Topical Problems of Modern Mathematics and Mathematical Education, Proc. LXVIII
International Conference "Herzen Readings – 2016" (11–15 April 2016, St. Petersburg, Russia),
A. I. Herzen Russian State Pedagogical University, 2016, pp. 82–89.
Zaitsev, V. F., Linchuk, L. V., and Flegontov, A. V., Differential Equations (Structural Theory),
Part IV [in Russian], A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2014.
Zaitsev, V. F. and Polyanin, A. D., Discrete-Group Methods for Integrating Equations of Nonlinear
Mechanics, CRC Press, Boca Raton, 1994.
Zaitsev, V. F. and Polyanin, A. D., Handbook of Nonlinear Differential Equations: Exact Solutions
and Applications in Mechanics [in Russian], Nauka, Moscow, 1993.
Zaitsev, V. F. and Polyanin, A. D., Handbook of Ordinary Differential Equations [in Russian],
Fizmatlit, Moscow, 2001.
Zaslavsky, G. M., Introduction to Nonlinear Physics [in Russian], Fizmatlit, Moscow, 1988.
Zayed, E. M. E., The G′
/G-method and its application to some nonlinear evolution equations, J.
Appl. Math. Comput., Vol. 30, pp. 89–103, 2009.
Zhang, H., New application of the G′/G -expansion method, Commun. Nonlinear Sci. Numer.
Simulat., Vol. 14, pp. 3220–3225, 2009.
Zhang, S., Application of Exp-function method to a KdV equation with variable coefficients, Phys.
Letters A, Vol. 365, No. 5–6, pp. 448–453, 2007.
Zhuravlev, V. Ph., The solid angle theorem in rigid body dynamics, J. Appl. Math. Mech., Vol. 60,
No. 2, pp. 319–322, 1996.
Zhuravlev, V. Ph., Foundations of Theoretical Mechanics [in Russian], Fizmatlit, Moscow, 2001.
Zhuravlev, V. Ph. and Klimov, D. M., Applied Methods in Oscillation Theory [in Russian], Nauka,
Moscow, 1988.
Zimmerman, R. L. and Olness, F., Mathematica for Physicists, Addison-Wesley, Reading, MA,
1995.
Zinchenko, N. S., A Lecture Course on Electron Optics [in Russian], Kharkov State University,
Kharkov, 1958.
Zwillinger, D., Handbook of Differential Equations, 3rd Edition, Academic Press, New York, 1997.
1425
... 2. If questions of the integrability of equation (2) are considered, then the values of the parameter are inessential, and the values of are essential. Currently, only two values = ± 6 25 are known, for which equation (2) admits a closed-form solution [27]. Therefore, if in some paper the integrability of this equation for other values of is proved, this result will certainly be new. ...
... Remark 4. Using handbooks [26,27], which contain many exact solutions of ordinary and partial differential equations, it is not difficult to give other examples of nonlinear equations that have qualitative features similar to Example 5. ...
The problems of estimating the similarity index of mathematical and other scientific publications containing equations and formulas are discussed for the first time. It is shown that the presence of equations and formulas (as well as figures, drawings, and tables) is a complicating factor that significantly complicates the study of such texts. It is shown that the method for determining the similarity index of publications, based on taking into account individual mathematical symbols and parts of equations and formulas, is ineffective and can lead to erroneous and even completely absurd conclusions. The possibilities of the most popular software system iThenticate, currently used in scientific journals, are investigated for detecting plagiarism and self-plagiarism. The results of processing by the iThenticate system of specific examples and special test problems containing equations and formulas are presented. It has been established that this software system when analyzing inhomogeneous texts, is often unable to distinguish self-plagiarism from pseudo-self-plagiarism (false self-plagiarism). A model complex situation is considered, in which the identification of self-plagiarism requires the involvement of highly qualified specialists of a narrow profile. Various ways to improve the work of software systems for comparing inhomogeneous texts are proposed. This article will be useful to researchers and university teachers in mathematics, physics, and engineering sciences, programmers dealing with problems in image recognition and research topics of digital image processing, as well as a wide range of readers who are interested in issues of plagiarism and self-plagiarism.
... Interested readers in the exact solutions of (2.12) for varieties of the functions a(x), p(x) and q(x), are referred to [24,25]. ...
A modified method of functional constraints is used to construct the exact solutions of nonlinear equations of reaction-diffusion type with delay and which are associated with variable coefficients. This study considers a most generalized form of nonlinear equations of reaction-diffusion type with delay and which are nonlinear and associated with variable coefficients. A novel technique is used in this study to obtain the exact solutions which are new and are of the form of traveling-wave solutions. Arbitrary functions are present in the solutions and they also contain free parameters, which make them suitable for usage in solving certain modeling problems, testing numerical and approximate analytical methods. The results of this study also find applications in obtaining the exact solutions of other forms of partial differential equations which are more complex. Specific examples of nonlinear equations of reaction-diffusion type with delay are given and their exact solutions are presented. Solutions of certain reaction-diffusion equations are also displayed graphically.
... Interested readers in the exact solutions of (2.12) for varieties of the functions a(x), p(x) and q(x), are referred to [24,25]. ...
A modified method of functional constraints is used to construct the exact solutions of nonlinear equations of reaction-diffusion type with delay and which are associated with variable coefficients. This study considers a most generalized form of nonlinear equations of reaction-diffusion type with delay and which are nonlinear and associated with variable coefficients. A novel technique is used in this study to obtain the exact solutions which are new and are of the form of traveling-wave solutions. Arbitrary functions are present in the solutions and they also contain free parameters, which make them suitable for usage in solving certain modeling problems, testing numerical and approximate analytical methods. The results of this study also find applications in obtaining the exact solutions of other forms of partial differential equations which are more complex. Specific examples of nonlinear equations of reaction-diffusion type with delay are given and their exact solutions are presented. Solutions of certain reaction-diffusion equations are also displayed graphically.
... , для которых уравнение (2) допускает решение в замкнутой форме [18]. Поэтому если в какой-нибудь статье будет доказана интегрируемость этого уравнения для других значений a, этот результат безусловно будет новым. ...
The problems of estimating the similarity index of inhomogeneous scientific publications containing equations and formulas are discussed for the first time. It is shown that the presence of equations and formulas (as well as figures, drawings, and tables) is a complicating factor that significantly complicates the study of such texts. It has been proved that the method for determining the similarity index of publications, based on taking into account individual mathematical symbols and parts of equations and formulas, is ineffective and can lead to erroneous and even completely absurd conclusions. Possibilities of the most popular software systems Antiplagiat and iThenticate, currently used in scientific journals, are investigated for detecting plagiarism and self-plagiarism. The results of processing by the iThenticate system of specific examples and specific test problems containing equations and formulas are presented. It has been established that this software system, when analyzing heterogeneous texts, is often unable to distinguish self-plagiarism from pseudo-self-plagiarism, seeming real (but false and imaginary) self-plagiarism. A model complex situation is considered, in which the identification of self-plagiarism requires the involvement of highly qualified specialists of a narrow profile. Various ways to improve the work of software systems for comparing inhomogeneous texts are proposed. This article will be useful to researchers and university teachers in physics, mathematics, and engineering, programmers dealing with problems in image recognition and research topics of digital image processing, as well as a wide range of readers who are interested in issues of plagiarism and self-plagiarism.
... , для которых уравнение (2) допускает решение в замкнутой форме [18]. Поэтому если в какой-нибудь статье будет доказана интегрируемость этого уравнения для других значений a, этот результат безусловно будет новым. ...
Abstract in English. The problems of estimating the similarity index of inhomogeneous scientific publications containing equations and formulas are discussed for the first time. It is shown that the presence of equations and formulas (as well as figures, drawings, and tables) is a complicating factor that significantly complicates the study of such texts. It has been proved that the method for determining the similarity index of publications, based on taking into account individual mathematical symbols and parts of equations and formulas, is ineffective and can lead to erroneous and even completely absurd conclusions. Possibilities of the most popular software systems Antiplagiat and iThenticate, currently used in scientific journals, are investigated for detecting plagiarism and self-plagiarism. The results of processing by the iThenticate system of specific examples and specific test problems containing equations and formulas are presented. It has been established that this software system, when analyzing heterogeneous texts, is often unable to distinguish self-plagiarism from pseudo-self-plagiarism, seeming real (but false and imaginary) self-plagiarism. A model complex situation is considered, in which the identification of self-plagiarism requires the involvement of highly qualified specialists of a narrow profile. Various ways to improve the work of software systems for comparing inhomogeneous texts are proposed. This article will be useful to researchers and university teachers in physics, mathematics, and engineering, programmers dealing with problems in image recognition and research topics of digital image processing, as well as a wide range of readers who are interested in issues of plagiarism and self-plagiarism. ******* Аннотация на русском языке. Впервые обсуждаются проблемы оценки индекса подобия неоднородных научных публикаций, содержащих уравнения и формулы. Показано, что наличие уравнений и формул (а также графиков, рисунков и таблиц) является осложняющим фактором, существенно затрудняющим исследование таких текстов. Доказано, что метод определения индекса подобия публикаций, основанный на учете отдельных математических символов и частей уравнений и формул, является неэффективным и может приводить к ошибочным и даже совершенно абсурдным выводам. Исследуются возможности наиболее популярных программных систем Антиплагиат и iThenticate, используемых в настоящее время в научных журналах для выявления плагиата и самоплагиата. Приведены результаты обработки системой iThenticate конкретных примеров и специальных тестовых задач, содержащих уравнения и формулы. Установлено, что эта программная система при анализе неоднородных текстов часто неспособна отличить самоплагиат от псевдосамоплагиата -- кажущегося (ложного, мнимого) самоплагиата. Рассмотрена модельная сложная ситуация, в которой идентификация самоплагиата требует привлечения высококвалифицированных специалистов узкого профиля. Предлагаются различные пути улучшения работы программных систем для сопоставления неоднородных текстов. Данная статья будет полезна научным работникам и преподавателям вузов физико-математического и инженерного профиля, программистам, занимающимся проблемой распознавания образов и вопросами цифровой обработки изображений, а также широкому кругу читателей, которые интересуются вопросами плагиата и самоплагиата.
... Notably, the overwhelming majority of known general solutions to nonlinear ODEs are presented in an implicit or parametric form (a similar conclusion follows from the statistical processing of most comprehensive reference books on exact solutions of ODEs [273,276]). This circumstance allows us to state a plausible hypothesis that nonlinear PDEs also admit exact solutions (by quadrature) in an implicit or parametric form more often than in explicit form. ...
This book is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training.
... The theory of ordinary differential equations establishes that eq. (10) has a unique solution in the open interval (0, ) if functions ( ) and ( ) are continuous in the domain ∈ (0, ) (p. 96 [25]), which is the case as long as ( ) is continuous in the domain ∈ (0, ). We note that the singularity of ( ) at = 0 does not belong to the open interval (0, ). ...
- Sergio Barbero
Multifocal lenses comprising progressive power surfaces are commonly used in contact and intraocular lens designs. Given a visual performance metric, a wavefront engineering approach to design such lenses is based on searching for the optimal wavefront at the exit pupil of the eye. Multifocal wavefronts distribute the energy along the different foci thanks to having a varying mean curvature. Therefore, a fundamental step in the wavefront engineering approach is to generate the wavefront from a prescribed mean curvature function. Conventionally, such a thing is done by superimposing spherical wavefront patches and maybe adding a certain component of spherical aberration to each spherical patch in order to increase the depth-of-field associated with each focus. However, such a procedure does not lead to smooth wavefront solutions and also restricts the type of available multifocal wavefronts. We derive a new, to the best of our knowledge, mathematical method to uniquely construct multifocal wavefronts from mean curvature functions (depending on radial and angular coordinates) under certain numerically justified approximations and restrictions. Additionally, our procedure leads to a particular family of wavefronts (line-umbilical multifocal wavefronts) described by 2 conditions: (1) to be smooth multiplicative separable functions in the radial and angular coordinates; (2) to be umbilical along a specific segment connecting the circle center with its edge. We provide several examples of multifocal wavefronts belonging to this family, including a smooth variant of the so-called light sword element.
- Igoris Belovas
The paper extends the research on the series with binomial-like coefficients for the computation of zeta functions on the complex plane. It offers alternative perspectives on the proof of central limit theorems for the coefficients of the series. The moment generating function of the coefficients and exact expressions for the first moments of the coefficients of the series are established.
- Roman Cherniha
- Vasyl' Davydovych
A non-linear reaction–diffusion system with cross-diffusion describing the COVID-19 outbreak is studied using the Lie symmetry method. A complete Lie symmetry classification is derived and it is shown that the system with correctly specified parameters admits highly non-trivial Lie symmetry operators, which do not occur for all known reaction–diffusion systems. The symmetries obtained are also applied for finding exact solutions of the system in the most interesting case from applicability point of view. It is shown that the exact solutions derived possess typical properties for describing the pandemic spread under 1D approximation in space and lead to the distributions, which qualitatively correspond to the measured data of the COVID-19 spread in Ukraine.
- Richard Banach
- Huibiao Zhu
In view of the increasing importance of cyber-physical systems, and of their correct design, the Abstract State Machine (ASM) framework is extended to include continuously varying quantities as well as the conventional discretely changing ones. This opens the door to the more faithful modelling of many scenarios where digital systems have to interact with the continuously varying physical world. Transitions in the extended framework are thus either moded (catering for discontinuously changing quantities), or pliant (catering for smoothly changing quantities). An operational semantics is provided, first for monolithic systems, and this is then extended to give a semantics for systems consisting of several distinct subsystems. This allows each subsystem to undergo its own subsystem-specific mode and pliant transitions. Refinement is elaborated in the extended context for both monolithic and composed systems. The formalism is illustrated using an example of a bouncing tennis ball.
The method of non-local transformations is proposed for numerical integration of non-linear Cauchy problems having non-monotonic blow-up solutions. In such problems there exists a singular point whose position is unknown in advance (for this reason, the standard numerical methods for solving blow-up problems can lead to significant errors). In addition, the non-monotonic behavior of the solution excludes a possibility of applying the hodograph transformation and some other methods that are used for numerical investigation of simpler problems having monotone blow-up solutions. In this paper, the method is described for numerical integration of similar problems for non-linear n th-order ordinary differential equations x_t^((n))=f(t,x,x_t^',…,x_t^((n-1) ) ), based on the introduction of a new non-local independent variable ξ, which is related to the original variables t and x by the equation ξ_t^'=g(t,x,x_t^',…,x_t^((n-1) ),ξ), and the subsequent transformation of the original problem to the Cauchy problem for the corresponding system of first-order differential equations. With a suitable choice of the regularizing function g, the proposed method leads to problems whose solutions are presented in parametric form and do not have blowing-up singular points; therefore the transformed problems allow the application of the standard fixed-step numerical methods. A number of test problems with non-monotonic blow-up is constructed for differential equations of the first, second, third, and fourth orders, which have exact solutions expressed in elementary functions. The numerical integration of test problems has shown high efficiency of methods based on non-local transformations of a special type (and the practical inapplicability of the arc-length transformation for numerical solving blow-up problems with ODEs of high order). In addition to problems for single ODEs, Cauchy problems for systems of coupled equations also are considered. Some recommendations are given on a suitable choice of a variable step in direct adaptive numerical methods in which the transformations of equations are not used. It is important to note that the method of non-local transformations can also be used to numerically integrate other problems with large solution gradients (including problems of boundary-layer type).
We consider blow-up problems having non-monotonic singular solutions that tend to infinity at a previously unknown point. For second-, third-, and fourth-order nonlinear ordinary differential equations, the corresponding multi-parameter test problems allowing exact solutions in elementary functions are proposed for the first time. A method of non-local transformations, that allows to numerically integrate non-monotonic blow-up problems, is described. A comparison of exact and numerical solutions showed the high efficiency of this method. It is important to note that the method of non-local transformations can be useful for numerical integration of other problems with large solution gradients (for example, in problems with solutions of boundary-layer type).
Several new methods of numerical integration of Cauchy problems with blow-up solutions for nonlinear ordinary differential equations of the first- and second-order are described. Solutions of such problems have singularities whose positions are unknown a priori (the standard numerical methods for solving problems with blow-up solutions can lead to significant errors). The first proposed method is based on the transition to an equivalent system of equations by introducing a new independent variable chosen as the first derivative. The second method is based on introducing a new auxiliary non-local variable with the subsequent transformation to the Cauchy problem for the corresponding system of ODEs. The third method is based on adding to the original equation of a differential constraint, which is an auxiliary ODE connecting the given variables and a new variable. The proposed methods lead to problems whose solutions are represented in parametric form and do not have blowing-up singular points; therefore the transformed problems admit the application of standard fixed-step numerical methods. The efficiency of these methods is illustrated by solving a number of test problems that admit an exact analytical solution. It is shown that: (i) the methods based on non-local transformations of a special kind are more efficient than several other methods, (ii) among the proposed methods, the most general method is the method based on the differential constraints. Some examples of nonclassical blow-up problems are considered. Simple theoretical estimates are derived for the critical value of an independent variable. It is shown that the method based on a non-local transformation of the general form as well as the method based on the differential constraints admit generalizations to the nth-order ODEs and systems of coupled ODEs.
Two new methods of numerical integration of Cauchy problems for nonlinear ODEs of the first- and second-order, which have blow-up solutions are described. In such problems, the position of the singular point is not known in advance. The first method is based on obtaining an equivalent system of equations by applying a differential transformation, where the first derivative (given in the original equation) is chosen as a new independent variable, t=yx′. The second method is based on introducing a new auxiliary non-local variable of the form ξ=∫x0xg(x,y,yx′)dx with the subsequent transformation to the Cauchy problem for the corresponding system of coupled ODEs. Both methods lead to problems whose solutions are represented in parametric form and do not have blowing-up singular points; therefore the standard fixed-step numerical methods can be applied. The efficiency of the proposed methods is illustrated with a number of test problems that admit exact solutions. It is shown that the methods, based on special exp-type transformations (which are particular cases of the general non-local transformation), are more efficient than the method based on the hodograph transformation, the method of the arc-length transformation, and the method based on the differential transformation. The method, based on introducing a non-local variable, can be generalized to the n th-order ODEs and systems of coupled ODEs. ***** This article is available on the author's homepage, see http://eqworld.ipmnet.ru/Arts_Polyanin/NLM_2017_Polyanin_Shingareva.pdf
This paper focuses on blow-up solutions of ordinary differential equations (ODEs). We present a method for validating blow-up solutions and their blow-up times, which is based on compactifications and the Lyapunov function validation method. The necessary criteria for this construction can be verified using interval arithmetic techniques. Some numerical examples are presented to demonstrate the applicability of our method.
The study deals with nonlinear ordinary differential equations defined parametrically by two relations; these arise in fluid dynamics and are a special class of coupled differential-algebraic equations. We propose a few techniques for reducing such equations, first or second order, to systems of standard ordinary differential equations as well as techniques for the exact integration of these systems. Several examples show how to construct general solutions to some classes of nonlinear equations involving arbitrary functions. We specify a procedure for the numerical solution of the Cauchy problem for parametrically defined differential equations and related differential-algebraic equations. The proposed techniques are also effective for the numerical integration of problems for implicitly defined equations. ***** This article is available on the author's homepage, see http://eqworld.ipmnet.ru/Arts_Polyanin/AML_2017_Polyanin_Zhurov.pdf
Ordinary Differential Equations Pdf For Engineering Mathematics
Source: https://www.researchgate.net/publication/320776882_Handbook_of_Ordinary_Differential_Equations_Exact_Solutions_Methods_and_Problems
Posted by: whittendiente.blogspot.com
0 Response to "Ordinary Differential Equations Pdf For Engineering Mathematics"
Post a Comment